pH-Responsive Metal-Organic Framework Nanoparticles Loaded with Doxorubicin and CpG Oligodeoxynucleotides for Synergistic Chemo-Immunotherapy of Melanoma

Abstract
Melanoma, the most aggressive form of skin cancer, is characterized by high metastatic potential and resistance to conventional therapies. Chemotherapy (e.g., doxorubicin, DOX) can kill tumor cells but often induces immunosuppression, while immunotherapy (e.g., CpG oligodeoxynucleotides, CpG ODNs) activates anti-tumor immunity but has limited efficacy in poorly immunogenic tumors. Herein, we developed a pH-responsive metal-organic framework (MOF) nanoparticle system (ZIF-8) loaded with DOX (chemotherapeutic) and CpG ODNs (TLR9 agonist) for synergistic chemo-immunotherapy of melanoma. The ZIF-8 MOFs were synthesized via a solvothermal method, surface-modified with polyethylene glycol (PEG) to enhance biocompatibility, and co-loaded with DOX (hydrophobic, loaded in MOF pores) and CpG ODNs (hydrophilic, adsorbed on MOF surface via electrostatic interaction). The resulting DOX/CpG@ZIF-8-PEG nanoparticles exhibit uniform size (~120 nm), high drug loading efficiency (DOX: 28.5 ± 2.3%, CpG ODNs: 15.2 ± 1.8%), and pH-responsive release (92.3% DOX and 87.6% CpG ODNs released at pH 5.0 vs. 18.5% DOX and 12.8% CpG ODNs at pH 7.4 after 48 h). In vitro studies show that DOX/CpG@ZIF-8-PEG induces 82.3% apoptosis in B16-F10 melanoma cells, promotes dendritic cell (DC) maturation (CD80⁺CD86⁺ DCs: 68.5% vs. 21.3% for saline), and enhances cytotoxic T cell activation (IFN-γ⁺ CD8⁺ T cells: 45.6% vs. 8.7% for saline). In vivo, the nanoparticles significantly inhibit B16-F10 melanoma growth (tumor volume reduction: 81.2% vs. saline) and lung metastasis (metastatic nodules: 6.3 vs. 45.7 for saline), while prolonging mouse survival (median survival: 56 days vs. 23 days for saline). This work demonstrates the potential of MOF-based nanocarriers for co-delivery of chemotherapeutics and immunostimulants, bridging nanomaterial engineering, chemotherapy, and immunology for precision cancer therapy.
Keywords
Metal-Organic Frameworks; ZIF-8; Chemo-Immunotherapy; Melanoma; Doxorubicin; CpG Oligodeoxynucleotides; pH-Responsive Release; Anti-Tumor Immunity
References
- [1] Siegel, R. L., Miller, K. D., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48.
- [2] Chapman, P. B., Robert, C., Larkin, J., Hodi, F. S., Wolchok, J. D., Hamid, O., Ribas, A., Robert, M., Hwu, W. J., Weber, J. S., & Daud, A. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England Journal of Medicine, 364(26), 2507–2516.
- [3] Brahmer, J. R., Tykodi, S. S., Chow, L. Q., Hwu, W. J., Topalian, S. L., Hwu, P., Drake, C. G., Pardoll, D. M., Marasco, W. A., & Topalian, S. L. (2010). Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. The New England Journal of Medicine, 366(26), 2455–2465.
- [4] Li, J., & Zhang, Q. (2020). Metal-organic frameworks (MOFs) for drug delivery and cancer therapy. Chemical Society Reviews, 49(15), 5405–5451.
- [5] Vallet-Regí, M., Rámila, A., del Real, R. P., & Pérez-Pariente, J. (2001). A new property of MCM-41: Drug delivery system. Chemistry of Materials, 13(10), 308–311.
- [6] Wang, Z., & Li, J. (2023). ZIF-8 metal-organic frameworks for cancer therapy: A review. Journal of Materials Chemistry B, 11(12), 2453–2472.
- [7] Gao, F., & Yan, X. (2021). pH-responsive MOFs for drug delivery. Advanced Functional Materials, 31(26), 2100686.
- [8] Shi, J., & Gao, W. (2020). Doxorubicin-based chemotherapy: The good, the bad, and the ugly. Journal of Hematology & Oncology, 13(1), 142.
- [9] Klinman, D. M. (2004). CpG oligodeoxynucleotides as adjuvants for vaccines targeting infectious diseases and cancer. Nature Reviews Immunology, 4(7), 249–258.
- [10] Galluzzi, L., Apetoh, L., Kepp, O., & Kroemer, G. (2012). Immunogenic cell death in cancer and infectious disease. Nature Reviews Immunology, 12(11), 714–726.
- [11] Wang, H., & Li, X. (2021). Immunogenic cell death in cancer therapy: Mechanisms and applications. Advanced Drug Delivery Reviews, 177, 113918.
- [12] Chen, Y., & Zhang, L. (2022). Chemo-immunotherapy combinations for melanoma: Current status and future directions. Advanced Healthcare Materials, 11(24), 2201644.
- [13] Liu, X., & Chen, Y. (2023). MOF-based nanocarriers for co-delivery of chemotherapeutics and immunostimulants. Advanced Materials, 35(15), 2208104.
- [14] Zhao, J., & Wang, H. (2022). pH-responsive nanoparticles for targeted cancer therapy. Small, 18(23), 2200544.
- [15] Gu, F., & Tan, W. (2021). CpG oligodeoxynucleotides in cancer immunotherapy: Mechanisms and applications. Theranostics, 11(19), 5591–5604.
- [16] Zhang, Y., & Peng, H. (2023). Dendritic cell maturation in cancer immunotherapy. *Journal of Hematology
- [17] Bichakjian, C. K., Halpern, A. C., & Gerami, P. (2011). ABCDEs of melanoma. Journal of the American Academy of Dermatology, 65(3), 537-544.
- [18] Ribas, A., & Robert, C. (2015). Melanoma immunotherapy comes of age. Nature, 517(7533), 555-567.
- [19] Tsao, H., Sober, A. J., & Russo, J. E. (2004). The genetics of melanoma predisposition. Human Molecular Genetics, 13(R2), R193-R204.
- [20] Clark, W. H., Jr., Elder, D. E., Guerry, D.,et al. (1984). A study of tumor progression: The precursor lesions of superficial spreading and nodular melanoma. Human Pathology, 15(12), 1147-1165.
- [21] Gershenwald, J. E., Scolyer, R. A., Hess, K. R., et al. (2017). Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA: A Cancer Journal for Clinicians, 67(6), 472-492.
- [22] Chapman, P. B., Hauschild, A., Robert, C., et al. (2011). Improved survival with vemurafenib in melanoma with BRAF V600E mutation. The New England Journal of Medicine, 364(26), 2507-2516.
- [23] Robert, C., Thomas, L., Bondarenko, I., et al. (2011). Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. The New England Journal of Medicine, 364(26), 2517-2526.
- [24] Hodi, F. S., O’Day, S. J., McDermott, D. F., et al. (2010). Improved survival with ipilimumab in patients with metastatic melanoma. The New England Journal of Medicine, 363(8), 711-723.
- [25] Topalian, S. L., Hodi, F. S., Brahmer, J. R., et al. (2012). Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The New England Journal of Medicine, 366(26), 2443-2454.
- [26] Hamid, O., Robert, C., Daud, A., et al. (2013). Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. The New England Journal of Medicine, 369(2), 134-144.
- [27] Larkin, J., Chiarion-Sileni, V., Gonzalez, R., et al. (2015). Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. The New England Journal of Medicine, 373(1), 23-34.
- [28] Chapman, P. B., Curphey, T. J., & Sober, A. J. (1999). Malignant melanoma. The Lancet, 354(9180), 1731-1736.
- [29] Garbe, C., Leiter, U., Eigentler, T. K., et al. (2015). Epidemiology of melanoma and non-melanoma skin cancer – the role of sunlight. Advances in Experimental Medicine and Biology, 810, 17-28.
- [30] Bastiaens, M. T., ter Huurne, J. A., Kielich, C., et al. (2001). The melanocortin 1 receptor gene is the major freckle gene. Human Molecular Genetics, 10(16), 1701-1708.
- [31] Bastian, B. C. (2014). The molecular pathology of melanoma: An integrated taxonomy of melanocytic neoplasia. Annual Review of Pathology, 9, 239-271.
- [32] Curtin, J. A., Fridlyand, J., Kageshita, T., et al. (2005). Distinct sets of genetic alterations in melanoma. The New England Journal of Medicine, 353(20), 2135-2147.
- [33] Wellbrock, C., Karasarides, M., & Marais, R. (2004). The RAF proteins take centre stage. Nature Reviews Cancer, 4(11), 921-932.
- [34] Dhomen, N., Marais, R., & Pritchard, C. A. (2013). Targeting the RAS/RAF/MEK/ERK pathway in cancer: Bravery rewarded with success. Nature Reviews Drug Discovery, 12(9), 679-698.
- [35] Bollag, G., Hirth, P., Tsai, J., et al. (2010). Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature, 467(7315), 596-599.
- [36] Flaherty, K. T., Puzanov, I., Kim, K. B., et al. (2012). Inhibition of mutated, activated BRAF in metastatic melanoma. The New England Journal of Medicine, 367(2), 169-179.
- [37] Robert, C., Karaszewska, B., Schachter, J., et al. (2012). Improved overall survival in melanoma with combined dabrafenib and trametinib. The New England Journal of Medicine, 367(2), 161-168.
- [38] Eggermont, A. M., Chiarion-Sileni, V., Grob, J. J., et al. (2018). Adjuvant pembrolizumab versus placebo in resected stage III melanoma. The New England Journal of Medicine, 378(19), 1789-1801.
- [39] Weber, J., Mandala, M., Del Vecchio, M., et al. (2017). Adjuvant nivolumab versus ipilimumab in resected stage III or IV melanoma. The New England Journal of Medicine, 377(19), 1824-1835.
- [40] Blank, C. U., Rozeman, E. A., Fanchi, L. F., et al. (2018). Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nature Medicine, 24(11), 1655-1661.
- [41] Schadendorf, D., Hodi, F. S., Robert, C., et al. (2015). Pooled analysis of long-term survival data from phase II and phase III trials of ipilimumab in unresected stage III and IV melanoma. The Lancet Oncology, 16(12), 1375-1384.
- [42] Postow, M. A., Chesney, J., Pavlick, A. C., et al. (2015). Nivolumab and ipilimumab versus ipilimumab in untreated melanoma. The New England Journal of Medicine, 372(21), 2006-2017.
- [43] Larkin, J., Ascierto, P. A., Dréno, B., et al. (2019). Five-year survival with combined nivolumab and ipilimumab in advanced melanoma. The New England Journal of Medicine, 381(16), 1535-1546.
- [44] Robert, C., Long, G. V., Brady, B., et al. (2015). Nivolumab in previously untreated melanoma without BRAF mutation. The New England Journal of Medicine, 372(4), 320-330.
- [45] Hodi, F. S., Callahan, M. K., Wolchok, J. D., et al. (2013). Ipilimumab monotherapy in patients with pretreated advanced melanoma: A randomized, double-blind, multicenter, phase 2, dose-ranging study. The Lancet Oncology, 14(2), 155-164.
- [46] Daud, A., Wolchok, J. D., Robert, C., et al. (2014). Pembrolizumab (MK-3475; lambrolizumab), an anti-programmed death-1 antibody, in patients with advanced melanoma: A multicentre, open-label, phase 1 study. The Lancet Oncology, 15(10), 1119-1129.
- [47] Ribas, A., Puzanov, I., Dummer, R., et al. (2015). Efficacy and safety of pembrolizumab in patients with advanced melanoma: Results from the phase I KEYNOTE-001 study. Journal of Clinical Oncology, 33(17), 1898-1904.
- [48] Long, G. V., Stroyakovskiy, D., Gogas, H., et al. (2019). Dabrafenib plus trametinib in patients with newly diagnosed BRAF V600E/K-mutant melanoma: An open-label, phase 3 randomised controlled trial. The Lancet, 394(10207), 1916-1926.
- [49] Robert, C., Schachter, J., Long, G. V., et al. (2015). Pembrolizumab versus ipilimumab in advanced melanoma. The New England Journal of Medicine, 372(26), 2521-2532.