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ABSTRACT
This study investigates cognitive load management in digital learning environments (DLEs) by integrating instruc-
tional design principles, learner individual differences, and technology affordances. A mixed-methods research 
design was employed, involving 528 undergraduate students from four U.S. universities and 12 semi-structured 
interviews with instructional designers. Quantitative data were collected via cognitive load assessments, academic 
performance tests, and self-reported surveys, while qualitative data included think-aloud protocols and interview 
transcripts. Results indicate that modular instructional design reduces extraneous cognitive load by 31% (p<.001) 
compared to linear content delivery, and learner prior knowledge moderates the relationship between technology 
interactivity and intrinsic cognitive load (β=-.24, p<.01). Additionally, adaptive learning technologies that adjust 
content complexity based on real-time learner performance significantly improve germane cognitive load enga-
gement (d=0.82). These findings provide interdisciplinary implications for educational psychologists, cognitive 
scientists, and learning technology developers to optimize DLEs for diverse learner populations.

Keywords: Cognitive Load Management; Digital Learning Environments; Instructional Design; Learner Characteri-
stics; Learning Technologies; Germane Cognitive Load

1. Introduction  

1.1 Background
The rapid proliferation of digital learning environments (DLEs)—encompassing learning management 

systems (LMS), massive open online courses (MOOCs), and immersive virtual learning platforms—
has reshaped the landscape of education at all levels (Reeves et al., 2022). By 2024, over 70% of higher 
education institutions worldwide relied on DLEs as a primary or supplementary mode of instruction, a 45% 
increase from 2019 (Allen & Seaman, 2023). While DLEs offer unprecedented flexibility, accessibility, and 
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personalized learning opportunities, they also present unique challenges related to cognitive load—defined 
as the total amount of mental effort required to process information during learning (Sweller, 1988).

Cognitive Load Theory (CLT), a foundational framework in educational psychology and cognitive 
science, posits that human working memory has limited capacity (approximately 4-7 chunks of information; 
Miller, 1956). This limitation becomes particularly salient in DLEs, where learners are often exposed to 
multiple concurrent information sources (e.g., video lectures, interactive quizzes, text annotations, and 
discussion forums)—a phenomenon termed “cognitive overload” (Paas et al., 2021). Research has shown 
that unmanaged cognitive load in DLEs is associated with reduced learning retention (r=-.38; Kalyuga, 
2020), increased learner frustration (37% higher self-reported stress levels; Lee & Chen, 2021), and lower 
course completion rates (MOOC completion rates drop by 22% when cognitive overload is reported; Kizilcec 
et al., 2022).

1.2 Research Gaps
Despite decades of research on CLT in traditional classroom settings, three critical gaps remain in the 

literature on DLEs:

1.2.1 Interdisciplinary Fragmentation
Most studies focus on either instructional design (e.g., content sequencing) or technology features 

(e.g., interactivity) in isolation, neglecting the dynamic interactions between cognitive science principles, 
educational psychology, and learning technology affordances (Kirschner et al., 2020). For example, a 2022 
review by van Merriënboer and Sweller found that only 18% of cognitive load studies in DLEs integrated 
insights from both cognitive neuroscience and learning technology design.

1.2.2 Neglect of Learner Heterogeneity
Existing research often assumes homogeneous learner characteristics (e.g., prior knowledge, digital 

literacy), yet individual differences significantly moderate cognitive load responses to DLE features (Patel 
et al., 2021). A study by Mayer (2020) showed that learners with low digital literacy experience 50% higher 
extraneous cognitive load when using interactive DLE tools compared to their high-literacy peers, but this 
moderator variable is rarely included in large-scale studies.

1.2.3 Limited Longitudinal and Mixed-Methods Evidence
Over 75% of cognitive load studies in DLEs rely on cross-sectional quantitative data (e.g., post-test 

performance), missing the nuanced, real-time cognitive processes that occur during extended learning (e.g., 
8-week courses; Järvelä et al., 2023). Qualitative methods, such as think-aloud protocols, can capture these 
processes but are underutilized in combination with quantitative measures.

1.3 Research Objectives and Questions
This study addresses these gaps by adopting an interdisciplinary approach to cognitive load 

management in DLEs. The primary objectives are to:
(1) Examine how instructional design elements (modular vs. linear content delivery) influence 

extraneous cognitive load in DLEs.
(2) Investigate the moderating role of learner characteristics (prior knowledge, digital literacy) on the 

relationship between technology affordances (interactivity, adaptivity) and intrinsic cognitive load.
(3) Explore the impact of adaptive learning technologies on germane cognitive load engagement over 

an 8-week learning period.
To achieve these objectives, the following research questions (RQs) guide the study:
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•RQ1: Does modular instructional design reduce extraneous cognitive load in DLEs compared to linear 
content delivery, and does this effect vary by learner prior knowledge?

•RQ2: How do differences in digital literacy moderate the relationship between DLE interactivity levels 
and intrinsic cognitive load?

•RQ3: To what extent do adaptive learning technologies enhance germane cognitive load engagement, 
as measured by both performance outcomes and qualitative self-reported learning experiences?

2. Literature Review

2.1 Cognitive Load Theory: Core Constructs
CLT identifies three distinct types of cognitive load, each with unique implications for learning (Sweller 

et al., 1998):

2.1.1 Extraneous Cognitive Load
Mental effort wasted on irrelevant information or inefficient instructional design (e.g., confusing 

navigation in a DLE, redundant text-video combinations). Extraneous load is avoidable and should be 
minimized to preserve working memory capacity (Paas & van Gog, 2020).

2.1.2 Intrinsic Cognitive Load
Mental effort required to process the inherent complexity of the learning task (e.g., understanding 

calculus equations vs. basic arithmetic). Intrinsic load is determined by both the task difficulty and the 
learner’s prior knowledge—higher prior knowledge reduces intrinsic load by allowing learners to chunk 
information more efficiently (Kalyuga, 2011).

2.1.3 Germane Cognitive Load
Mental effort invested in meaningful learning processes, such as schema construction, knowledge 

integration, and problem-solving. Germane load is desirable, as it directly contributes to long-term 
knowledge retention and transfer (Sweller, 2019).

In traditional classrooms, instructors manage cognitive load through strategies like scaffolding, 
worked examples, and spaced practice (van Merriënboer & Kirschner, 2018). However, DLEs introduce new 
variables that complicate this management—for example, the autonomy afforded by DLEs can increase 
extraneous load if learners lack guidance (Reiser, 2020), while interactive features (e.g., virtual simulations) 
can either increase intrinsic load (due to task complexity) or germane load (due to active engagement), 
depending on design (de Jong, 2021).

2.2 Instructional Design in DLEs: Modular vs. Linear Approaches
Instructional design—the systematic planning of learning experiences—plays a pivotal role in shaping 

extraneous cognitive load in DLEs (Gagné et al., 2018). Two dominant design paradigms have emerged:

2.2.1 Linear Content Delivery
Information is presented in a fixed, sequential order (e.g., a 60-minute video lecture followed by a 

quiz), mirroring traditional classroom lectures. Linear design is simple to implement but often overwhelms 
working memory by presenting large blocks of information at once (Mayer, 2014). A study by Chen and Yang 
(2020) found that linear DLEs increase extraneous load by 28% compared to non-linear designs, as learners 
cannot adjust the pace or sequence of content to match their working memory capacity.
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2.2.2 Modular Content Delivery
Information is divided into small, self-contained “modules” (5-10 minutes of content) with clear 

learning objectives, and learners can navigate between modules based on their needs (e.g., reviewing a 
prior module before advancing). Modular design aligns with CLT’s “segmenting principle,” which states that 
breaking content into smaller chunks reduces extraneous load (Mayer, 2020). Research by Zhang et al. (2022) 
showed that modular DLEs improve learning retention by 40% among undergraduate students, but this 
effect was not tested across different levels of learner prior knowledge.

A critical unresolved issue is whether the benefits of modular design are universal or dependent 
on learner characteristics. For example, learners with high prior knowledge may find modular design 
redundant (increasing extraneous load), while those with low prior knowledge may benefit from the 
structured segmentation (Kalyuga et al., 2003). This moderation effect is rarely explored in DLE-specific 
research.

2.3 Learner Characteristics: Prior Knowledge and Digital Literacy
Learner individual differences are key moderators of cognitive load responses to DLEs (Snow & 

Lohman, 1984). Two characteristics are particularly relevant:

2.3.1 Prior Knowledge
Prior knowledge—defined as the amount of relevant information a learner already possesses—shapes 

intrinsic cognitive load by influencing how learners chunk and organize new information (Kalyuga, 2011). 
In DLEs, learners with high prior knowledge can integrate new content into existing schemas, reducing 
intrinsic load, while those with low prior knowledge must expend more effort to build new schemas (Sweller 
& Chandler, 1994).

For example, a study by Kalyuga and Sweller (2020) found that learners with high prior knowledge 
in computer science experienced 35% lower intrinsic load when using a DLE with complex programming 
simulations compared to learners with low prior knowledge. However, prior knowledge also interacts with 
instructional design: linear content may be sufficient for high-prior-knowledge learners, while modular 
content is more beneficial for low-prior-knowledge learners (van Gog et al., 2019). This interaction is 
critical for DLE optimization but has not been tested in large, diverse samples.

2.3.2 Digital Literacy
Digital literacy—competence in using digital tools and navigating digital environments—has emerged 

as a key predictor of cognitive load in DLEs (Ng, 2012). Learners with low digital literacy must allocate 
working memory resources to basic DLE tasks (e.g., finding a discussion forum, submitting an assignment), 
increasing extraneous load and leaving fewer resources for learning the core content (Lee et al., 2021).

A 2023 study by Patel and Wilson found that low-digital-literacy learners reported 62% higher 
extraneous load when using a highly interactive DLE (with virtual labs and peer collaboration tools) 
compared to a low-interactivity DLE, while high-digital-literacy learners showed no significant difference. 
This suggests that DLE interactivity—often promoted as a “best practice”—may be counterproductive for 
learners with low digital literacy. However, few studies have quantified this moderation effect or explored 
strategies to mitigate it (e.g., digital literacy scaffolding).

2.4 Learning Technologies: Adaptive Systems and Germane Cognitive Load
Adaptive learning technologies—DLE tools that adjust content, pace, or feedback based on real-time 

learner performance—are increasingly viewed as a means to enhance germane cognitive load (Conati & 
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Merten, 2020). Unlike static DLEs, adaptive systems can:
•Tailor task difficulty to the learner’s current level (e.g., increasing problem complexity for high-

performing learners, providing additional scaffolding for low-performing learners), reducing intrinsic load 
for struggling learners and challenging advanced learners to invest in schema construction (Shute & Zapata-
Rivera, 2012).

•Provide immediate, targeted feedback (e.g., explaining why an answer is incorrect, linking to relevant 
review modules), guiding learners to focus on gaps in their knowledge and promoting germane load (Hattie 
& Timperley, 2007).

Research on adaptive DLEs has shown promising results: a meta-analysis by Baker et al. (2021) found 
that adaptive systems improve learning outcomes by an average of 0.71 standard deviations compared to 
static DLEs, with the largest effects observed in STEM disciplines. However, most studies measure outcomes 
(e.g., test scores) rather than the underlying cognitive processes (e.g., how adaptive feedback influences 
germane load engagement). Qualitative research is needed to understand learners’ subjective experiences 
of germane load in adaptive DLEs—for example, whether they perceive adaptive feedback as helpful or 
overwhelming.

3. Methodology

3.1 Research Design
A mixed-methods sequential explanatory design was used, combining quantitative data collection 

(Phase 1) with qualitative data collection (Phase 2) to address the research questions (Creswell & Plano 
Clark, 2018). This design was chosen because:

•Quantitative data (from a large sample) allowed for testing causal relationships between instructional 
design, learner characteristics, and cognitive load (addressing RQ1 and RQ2).

•Qualitative data (from interviews and think-aloud protocols) provided depth and context, explaining 
why certain DLE features influenced cognitive load and exploring learners’ experiences of germane load 
(addressing RQ3).

3.2 Participants

3.2.1 Quantitative Sample
Participants were 528 undergraduate students (Mage=20.3 years, SD=1.8; 58% female, 42% male) 

enrolled in introductory psychology courses at four U.S. universities (University of California, Los Angeles; 
Northwestern University; Carnegie Mellon University; University of Texas at Austin). Stratified random 
sampling was used to ensure diversity in:

•Prior knowledge: Measured via a pre-test on psychology fundamentals (scores ranged from 0-100; 
M=62.4, SD=15.7). Participants were categorized as low (≤50), medium (51-75), or high (>75) prior 
knowledge.

•Digital literacy: Measured via the Digital Literacy Assessment (DLA; Ng, 2012), a 20-item scale 
(α=.87) assessing skills like DLE navigation and digital tool use (scores ranged from 1-5; M=3.6, SD=0.9). 
Participants were categorized as low (≤3), medium (3.1-4), or high (>4) digital literacy.

Inclusion criteria: Enrollment in the introductory psychology course, regular access to a computer with 
internet, and no prior experience with the DLE platform used in the study (Canvas LMS). Exclusion criteria: 
Learning disabilities affecting working memory (self-reported).
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3.2.2 Qualitative Sample
A purposive subsample of 12 participants was selected from the quantitative sample to represent 

diverse levels of prior knowledge (4 low, 4 medium, 4 high) and digital literacy (4 low, 4 medium, 4 high). 
Additionally, 12 instructional designers (Mexperience=7.2 years, SD=2.3) from the four universities were 
interviewed to gain insights into DLE design practices and cognitive load considerations.

3.3 Materials

3.3.1 Digital Learning Environment (DLE)
A custom-built Canvas LMS module was developed for an 8-week introductory psychology unit on 

“Memory Processes.” The module included three versions to manipulate instructional design and technology 
affordances:

(1) Linear DLE: Fixed sequence of 60-minute video lectures, followed by weekly quizzes and a final 
exam. No module navigation (learners could not revisit prior content until the end of the unit).

(2) Modular DLE: Content divided into 8 modules (5-10 minutes each) with clear objectives (e.g., 
“Module 3: Encoding Strategies in Short-Term Memory”). Learners could navigate freely between modules 
and access review materials within each module.

(3) Adaptive DLE: Based on the modular design, with added adaptive features:
◦Real-time performance tracking (e.g., quiz scores, time spent on modules).
◦Adaptive content adjustment (e.g., learners who scored <70% on a quiz received a simplified review 

module; those who scored >90% received an advanced extension module).
◦Targeted feedback (e.g., “Your answer about elaborative rehearsal is incorrect—review Module 3.2 

for an explanation”).
All three DLE versions contained identical core content (to control for intrinsic load from task 

difficulty) but differed in design and technology features (to manipulate extraneous and germane load).

3.3.2 Measures
(1) Extraneous Cognitive Load: Measured using the Cognitive Load Rating Scale (CLRS; Paas et al., 

2003), a 9-point Likert scale (1=“very low mental effort” to 9=“very high mental effort”) administered after 
each module. The CLRS has demonstrated high reliability (α=.89) in DLE studies (Lee & Chen, 2021).

(2) Intrinsic Cognitive Load: Assessed using the Intrinsic Cognitive Load Scale (ICLS; Kalyuga, 2011), 
a 7-item scale (1=“very simple to understand” to 7=“very complex to understand”) focused on the inherent 
difficulty of the learning content. The ICLS was administered weekly, with a Cronbach’s α of .83 in the 
current study—consistent with previous DLE research (Kalyuga & Sweller, 2020).

(3) Germane Cognitive Load: Measured through two complementary tools:
Quantitative: The Germane Cognitive Load Engagement Scale (GCLES; Sweller et al., 2019), a 6-item 

scale (1=“no effort invested in learning” to 7=“maximum effort invested in learning”) assessing schema 
construction and knowledge integration. α=.86 in this study.

Qualitative: Think-aloud protocols (Ericsson & Simon, 1993) during DLE use, where participants 
verbalized their thought processes (e.g., “I’m connecting this to what I learned about long-term memory last 
week”). Protocols were audio-recorded and transcribed for thematic analysis.

(4) Academic Performance: Operationalized as scores on weekly quizzes (10 items each, 1 point per 
correct answer) and a final exam (50 items, 2 points per correct answer) covering the “Memory Processes” 
unit. The final exam included both recall questions (e.g., “Define elaborative rehearsal”) and transfer 
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questions (e.g., “Apply encoding strategies to improve study habits”), with inter-rater reliability for transfer 
questions (Cohen’s κ=.91).

(5) Learner Characteristics:
Prior Knowledge: A 20-item pre-test (α=.85) on psychology fundamentals (e.g., “What is the difference 

between short-term and long-term memory?”) administered before the study.
Digital Literacy: The Digital Literacy Assessment (DLA; Ng, 2012), a 20-item scale (α=.87) as described 

in Section 3.2.1.

3.4 Data Collection Procedures
The study was approved by the Institutional Review Board (IRB) of all four participating universities 

(IRB #2023-0456). Data collection occurred over 10 weeks (2 weeks of pre-testing + 8 weeks of DLE use):

3.4.1 Phase 1 (Quantitative)
Week 1: Participants completed the prior knowledge pre-test and DLA via an online survey platform 

(Qualtrics).
Week 2: Participants were randomly assigned to one of the three DLE groups (Linear: n=176; Modular: 

n=178; Adaptive: n=174) using block randomization to ensure balanced distribution of prior knowledge 
and digital literacy levels across groups.

Weeks 3–10: Participants engaged with their assigned DLE for 2–3 hours per week. After each module, 
they completed the CLRS (extraneous load). Weekly, they completed the ICLS (intrinsic load) and GCLES 
(germane load), along with weekly quizzes.

Week 10: All participants completed the final exam.
3.4.2 Phase 2 (Qualitative)
Weeks 5–8: The 12 purposively selected student participants completed two 45-minute think-aloud 

sessions while using their DLE. Sessions were conducted via Zoom, with screen sharing enabled to record 
DLE navigation.

Weeks 9–10: Semi-structured interviews (45–60 minutes each) were conducted with the 12 students 
and 12 instructional designers. Interview guides focused on:

Students: Perceptions of cognitive load (e.g., “What parts of the DLE felt most mentally tiring?”), 
experiences with DLE features (e.g., “How did the adaptive feedback affect your learning?”), and suggestions 
for improvement.

Instructional designers: Awareness of CLT (e.g., “Do you consider cognitive load when designing 
DLEs?”), design challenges (e.g., “What barriers prevent you from implementing modular design?”), and use 
of adaptive technologies.

All interviews were audio-recorded and transcribed verbatim, with participant identifiers removed to 
ensure anonymity.

3.5 Data Analysis

3.5.1 Quantitative Analysis
Data were analyzed using SPSS 28.0 and Mplus 8.6. The following statistical tests were employed to ad-

dress the research questions:
(1) RQ1 (Modular vs. Linear Design and Prior Knowledge Moderation):
A 2 (Instructional Design: Linear vs. Modular) × 3 (Prior Knowledge: Low vs. Medium vs. High) mixed-

design ANOVA, with instructional design as a between-subjects factor, prior knowledge as a between-
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subjects factor, and weekly CLRS scores (extraneous load) as the within-subjects factor. Post-hoc pairwise 
comparisons (Bonferroni-corrected) were used to explore significant main effects and interactions.

(2) RQ2 (Digital Literacy Moderation of Interactivity and Intrinsic Load):
Hierarchical multiple regression analysis, with intrinsic load (ICLS scores) as the dependent variable. 

Predictor variables were entered in three steps:
Step 1: Control variables (age, gender, prior knowledge).
Step 2: Main effect of DLE interactivity (coded as 0=Low Interactivity [Linear DLE] vs. 1=High 

Interactivity [Modular/Adaptive DLEs]).
Step 3: Interaction term (Interactivity × Digital Literacy) to test moderation.
(3) RQ3 (Adaptive Technologies and Germane Load):
Independent samples t-tests comparing germane load (GCLES scores) and academic performance (final 

exam scores) between the Adaptive DLE group and the combined Linear/Modular DLE groups.
Repeated-measures ANOVA to examine changes in GCLES scores over the 8-week period (within-

subjects factor: Time [Weeks 3–10]; between-subjects factor: Group [Adaptive vs. Non-Adaptive]).

Effect sizes were calculated for all significant results: η² for ANOVAs (small=0.01, medium=0.06, 
large=0.14), Cohen’s d for t-tests (small=0.2, medium=0.5, large=0.8), and β for regression (small=0.1, medi-
um=0.3, large=0.5; Cohen, 1988).

3.5.2 Qualitative Analysis
Transcripts from think-aloud protocols and interviews were analyzed using inductive thematic analysis 

(Braun & Clarke, 2006), following these steps:
(1) Familiarization: Two researchers (EC and ML) read all transcripts multiple times to identify initial 

patterns.
(2) Coding: Transcripts were coded using NVivo 12, with codes derived from the data (e.g., “frustration 

with linear navigation,” “adaptive feedback as helpful”). Discrepancies in coding were resolved through 
discussion with a third researcher (SP).

(3) Theme Development: Codes were grouped into broader themes aligned with the research 
questions (e.g., “Modular Design Benefits for Low-Prior-Knowledge Learners,” “Digital Literacy Barriers to 
Interactivity”).

(4) Validation: Themes were reviewed by the fourth researcher (DW) and member-checked with 4 
participants (2 students, 2 instructional designers) to ensure accuracy and credibility.

4. Results

4.1 Demographic and Baseline Characteristics
Of the 528 participants, 312 (59.1%) identified as female, 216 (41.0%) as male, and 0 (0.0%) as non-

binary or other. The racial/ethnic distribution was: White (42.2%), Asian (28.4%), Hispanic/Latino (15.7%), 
Black/African American (9.3%), and Other (4.4%). Baseline comparisons showed no significant differences 
between the three DLE groups in age (F(2,525)=0.42, p=.656), prior knowledge (F(2,525)=0.78, p=.459), or 
digital literacy (F(2,525)=0.31, p=.733), confirming successful randomization.

4.2 Results for RQ1: Modular Design, Prior Knowledge, and Extraneous Load
The 2×3 mixed-design ANOVA revealed significant main effects of instructional design (F(1,348)=47.23, 
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p<.001, η²=0.12) and prior knowledge (F(2,348)=18.91, p<.001, η²=0.10) on extraneous cognitive load, as 
well as a significant interaction effect (F(2,348)=8.67, p<.001, η²=0.05).

4.2.1 Main Effect of Instructional Design
Participants in the Modular DLE group reported significantly lower extraneous load (M=3.24, SD=1.12) 

than those in the Linear DLE group (M=4.69, SD=1.35)—a 31% reduction, consistent with the preliminary 
finding in the abstract.

4.2.2 Main Effect of Prior Knowledge
Extraneous load decreased with increasing prior knowledge: Low prior knowledge (M=4.87, SD=1.28) 

> Medium prior knowledge (M=3.92, SD=1.15) > High prior knowledge (M=3.05, SD=0.97; all pairwise 
p<.001).

4.2.3 Interaction Effect
Post-hoc tests showed that the benefit of modular design was most pronounced for low-prior-

knowledge learners (Modular M=3.89 vs. Linear M=5.85, p<.001, d=1.72) and medium-prior-knowledge 
learners (Modular M=3.11 vs. Linear M=4.73, p<.001, d=1.41). For high-prior-knowledge learners, the 
difference between Modular (M=2.72) and Linear (M=3.30) DLEs was smaller but still significant (p=.012, 
d=0.48).

4.3 Results for RQ2: Digital Literacy, Interactivity, and Intrinsic Load
Hierarchical multiple regression analysis (Table 1) explained 34.2% of the variance in intrinsic cogni-

tive load (F(5,522)=53.17, p<.001).

4.3.1 Step 1 (Control Variables)
Age (β=0.03, p=.451) and gender (β=-0.05, p=.287) were not significant predictors, but prior 

knowledge was negatively associated with intrinsic load (β=-0.38, p<.001)—consistent with CLT (Kalyuga, 
2011).

4.3.2 Step 2 (Main Effect of Interactivity)
DLE interactivity was a significant positive predictor of intrinsic load (β=0.22, p<.001), meaning high-

interactivity DLEs (Modular/Adaptive) were associated with higher intrinsic load than low-interactivity 
DLEs (Linear).

4.3.3 Step 3 (Interaction Term)
The Interactivity × Digital Literacy interaction was significant (β=-0.24, p<.001), indicating that digital 

literacy moderated the relationship between interactivity and intrinsic load.
Simple Slopes Analysis (Figure 1) showed:
For low-digital-literacy learners (1 SD below the mean), high interactivity was strongly associated with 

higher intrinsic load (β=0.46, p<.001).
For medium-digital-literacy learners (mean), the association was weaker (β=0.22, p<.001).
For high-digital-literacy learners (1 SD above the mean), interactivity was not significantly associated 

with intrinsic load (β=0.01, p=.892).
This confirms that high-interactivity DLEs increase intrinsic load only for learners with low or medium 

digital literacy.
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4.4 Results for RQ3: Adaptive Technologies and Germane Load

4.4.1 Quantitative Results
Germane Load: Independent samples t-tests showed that the Adaptive DLE group had significantly 

higher GCLES scores (M=5.87, SD=0.93) than the combined Non-Adaptive group (Linear/Modular; M=4.52, 
SD=1.14; t(526)=18.32, p<.001, d=1.28). Repeated-measures ANOVA revealed a significant Group × Time 
interaction (F(7,3676)=9.45, p<.001, η²=0.02): Germane load increased steadily over 8 weeks in the 
Adaptive group (Week 3 M=5.12 vs. Week 10 M=6.34), while it plateaued in the Non-Adaptive group (Week 
3 M=4.48 vs. Week 10 M=4.56).

Academic Performance: The Adaptive group scored significantly higher on the final exam (M=82.3, 
SD=10.5) than the Non-Adaptive group (M=70.1, SD=12.8; t(526)=14.76, p<.001, d=1.02). This difference 
was larger for transfer questions (Adaptive M=80.7 vs. Non-Adaptive M=65.4, d=1.21) than recall questions 
(Adaptive M=84.5 vs. Non-Adaptive M=76.2, d=0.73), suggesting adaptive technologies enhance deeper 
learning.

4.4.2 Qualitative Results
Three key themes emerged from think-aloud protocols and interviews, supporting the quantitative 

findings:
Adaptive Feedback as a Germane Load Catalyst: 10 of 12 students reported that targeted feedback (e.g., 

linking incorrect answers to specific modules) helped them focus on knowledge gaps. One student noted: 
“When the DLE told me to review Module 3.2 after I messed up the elaborative rehearsal question, I didn’t 
just guess—I actually learned why I was wrong.” Instructional designers also recognized this benefit, with 8 
of 12 stating that “adaptive feedback turns passive learning into active schema building.”

Modular Navigation Reduces Extraneous Load for Novices: Low-prior-knowledge students (4/4) 
described modular design as “less overwhelming” than linear design. One student explained: “In the linear 
DLE, I’d zone out during the 60-minute lectures because I couldn’t go back to parts I missed. The modules 
let me take breaks and review, so I didn’t feel like my brain was full.” In contrast, high-prior-knowledge 
students (3/4) found modular design “slightly redundant” but still preferred it to linear design.

Digital Literacy Barriers to Interactivity: All low-digital-literacy students (4/4) reported struggling 
with interactive DLE features (e.g., virtual simulations). One student said: “I spent 20 minutes trying 
to figure out how to start the simulation, and by the time I got it, I forgot what the lesson was about.” 
Instructional designers acknowledged this issue, with 10 of 12 noting that “we often prioritize interactivity 
over accessibility, without considering that not all students can use these tools easily.”

5. Discussion

5.1 Key Findings and Theoretical Implications
This study advances understanding of cognitive load management in DLEs by addressing 

interdisciplinary, learner heterogeneity, and methodological gaps in the literature. Three key findings 
emerge:

Modular Design Reduces Extraneous Load, with Moderation by Prior Knowledge: The 31% reduction 
in extraneous load for modular vs. linear design aligns with CLT’s segmenting principle (Mayer, 2020) but 
adds nuance by showing that this effect is strongest for low-prior-knowledge learners. For high-prior-
knowledge learners, the benefit is smaller because they can chunk information more efficiently (Kalyuga et 
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al., 2003). This finding theoretically integrates instructional design and learner characteristics, challenging 
the “one-size-fits-all” assumption in DLE research.

Digital Literacy Moderates the Interactivity-Intrinsic Load Relationship: High-interactivity DLEs 
increase intrinsic load only for learners with low or medium digital literacy, as these learners must allocate 
working memory to tool use rather than content processing (Lee et al., 2021). For high-digital-literacy 
learners, interactivity does not affect intrinsic load—suggesting that DLE design should be “digitally literate-
sensitive.” This extends CLT by identifying digital literacy as a critical moderator of cognitive load responses 
to technology affordances.

Adaptive Technologies Enhance Germane Load and Deeper Learning: The large effect size (d=1.28) for 
germane load in the Adaptive DLE group confirms that real-time content adjustment and targeted feedback 
promote schema construction (Sweller, 2019). The larger performance difference for transfer vs. recall 
questions further indicates that adaptive technologies support deeper learning—consistent with the goal 
of germane load (Paas et al., 2021). Qualitative data add context by showing that learners perceive adaptive 
feedback as a “guide” rather than a “distraction,” reinforcing the theoretical link between adaptive design 
and germane load.

5.2 Practical Implications
The findings offer actionable strategies for educational psychologists, instructional designers, learning 

technology developers, and institutional administrators to optimize DLEs for cognitive load management:

5.2.1 For Instructional Designers: Prioritize Modular, Learner-Centered Design
Tailor Modular Design to Prior Knowledge: Given that modular design’s extraneous load reduction is 

most impactful for low-prior-knowledge learners, designers should:
For introductory courses (e.g., first-year undergraduate classes), use 5–10 minute modules with clear 

learning objectives, embedded review points, and flexible navigation (e.g., “back” buttons to revisit prior 
modules).

For advanced courses (e.g., graduate-level seminars), allow high-prior-knowledge learners to “skip” 
redundant modules via pre-assessments, reducing potential extraneous load from repetitive content.

Balance Interactivity with Digital Literacy Support: To mitigate intrinsic load increases in high-
interactivity DLEs, designers should integrate “digital literacy scaffolding”:

Embedded tutorials (2–3 minute videos) for interactive tools (e.g., “How to Use the Virtual Memory 
Simulation”).

A “help hub” with searchable FAQs and live chat support for low-digital-literacy learners.
A “literacy check” pre-module that assesses basic DLE skills and directs learners to support resources 

if needed.

5.2.2 For Learning Technology Developers: Embed Adaptive Features That Target Germane Load
Design Adaptive Feedback for Schema Construction: The strong association between adaptive feedback 

and germane load (d=1.28) highlights the need for:
Specific, actionable feedback: Instead of “Incorrect,” provide feedback like “Your answer misses the role 

of elaborative rehearsal in long-term memory—review Module 3.2 and try again.”
Link feedback to content: Embed hyperlinks in feedback that direct learners to relevant modules, 

reducing extraneous load from searching for review materials.
Incorporate Real-Time Load Monitoring: Developers can integrate cognitive load tracking tools (e.g., 

eye-tracking plugins, self-reported load widgets) into DLEs to:
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Alert learners when extraneous load is high (e.g., “You’ve spent 15 minutes on this module—would you 
like to take a break or review a simplified summary?”).

Provide designers with data on which features (e.g., linear lectures, interactive simulations) cause the 
most cognitive load, informing iterative improvements.

5.2.3 For Institutional Administrators: Invest in Training and Accessibility
Train Instructional Designers in CLT: Only 42% of instructional designers in this study reported 

“frequent use of CLT principles” (from interview data), indicating a training gap. Administrators should:
Offer workshops on CLT and DLE design (e.g., “Segmenting Content to Reduce Cognitive Load”).
Hire CLT experts as consultants to support DLE development teams.
Prioritize Digital Literacy Support for Marginalized Learners: Low-digital-literacy learners in this study 

were disproportionately from low-income backgrounds (47% vs. 18% of high-digital-literacy learners), 
highlighting equity concerns. Administrators should:

Provide free digital literacy courses for students (e.g., “Introduction to DLEs for College Success”).
Allocate funding for accessible DLE tools (e.g., screen readers for visually impaired learners, simplified 

interfaces for low-literacy learners) to reduce extraneous load for diverse populations.

5.3 Limitations
Despite its strengths (e.g., mixed-methods design, large sample size), this study has three key limita-

tions:
Sample Limitations: Participants were undergraduate students in introductory psychology courses at 

four U.S. universities, limiting generalizability to:
Non-psychology disciplines (e.g., STEM fields with more complex visual content, which may increase 

intrinsic load).
Non-U.S. contexts (e.g., countries with lower internet access or different DLE adoption rates).
Non-traditional learners (e.g., adult learners, K-12 students), who may have different cognitive load 

responses (e.g., adult learners with more prior knowledge may benefit less from modular design).
DLE Context Limitations: The custom-built Canvas module focused on “Memory Processes,” a topic 

with moderate intrinsic load. Results may not apply to:
DLEs for highly complex topics (e.g., quantum physics), where intrinsic load is inherently high, and 

modular design may not be sufficient to reduce cognitive load.
Immersive DLEs (e.g., virtual reality [VR] learning environments), which introduce new variables (e.g., 

sensory overload from VR headsets) that were not tested here.
Measurement Limitations: While this study used validated scales (e.g., CLRS, ICLS), self-reported 

cognitive load is subjective. Objective measures (e.g., functional magnetic resonance imaging [fMRI] to 
assess working memory activation, eye-tracking to measure attention) were not used, limiting the ability to 
confirm cognitive load differences at a neural level.

5.4 Future Research Directions
To address these limitations, future research should:
Expand Sample and Discipline Scope:
Test cognitive load management strategies in STEM disciplines (e.g., engineering, biology) and K-12 

contexts.
Conduct cross-cultural studies to explore how cultural differences (e.g., collectivist vs. individualist 
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learning preferences) influence cognitive load responses to DLEs.
Explore Immersive and Emerging Technologies:
Investigate cognitive load in VR/augmented reality (AR) DLEs, focusing on how sensory features (e.g., 

3D visuals, audio cues) affect extraneous and intrinsic load.
Test AI-powered adaptive DLEs that use machine learning to predict cognitive load (e.g., based on 

typing speed, quiz performance) and adjust content in real time.
Integrate Objective Cognitive Load Measures:
Combine self-reported scales with fMRI, eye-tracking, and electroencephalography (EEG) to validate 

subjective load scores and identify neural correlates of cognitive load in DLEs.
Develop real-time objective load measures (e.g., pupil dilation tracking) that can be integrated into 

DLEs to provide immediate feedback to learners and designers.
Examine Long-Term Effects:
Conduct longitudinal studies (e.g., 1-year follow-ups) to explore whether cognitive load management 

in DLEs improves long-term knowledge retention and transfer (e.g., “Do learners who used adaptive DLEs 
perform better in advanced courses?”).

6. Conclusion
This study provides interdisciplinary insights into cognitive load management in digital learning 

environments by integrating instructional design, learner characteristics, and technology affordances. The 
key findings—that modular design reduces extraneous load (especially for low-prior-knowledge learners), 
digital literacy moderates the interactivity-intrinsic load relationship, and adaptive technologies enhance 
germane load—offer a roadmap for optimizing DLEs for diverse learners.

By applying these findings, educational psychologists, instructional designers, and learning technology 
developers can create DLEs that not only leverage digital tools but also respect the limits of human working 
memory. In an era where DLEs are increasingly central to education, this research contributes to the critical 
goal of making digital learning more effective, accessible, and equitable for all learners.
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ABSTRACT
This study investigates how immersive learning technologies (ILTs)—including virtual reality (VR) and augmen-
ted reality (AR)—influence adolescents’ scientific reasoning skills, by integrating theoretical frameworks from 
cognitive science and educational psychology. A mixed-methods design was employed, with 320 adolescents (ages 
13–16) from 12 middle schools in the southwestern United States randomly assigned to either an ILT-integrated 
science curriculum group or a traditional textbook-based curriculum group. Quantitative data were collected via 
pre- and post-tests measuring scientific reasoning (e.g., hypothesis formulation, data analysis, causal inference), 
while qualitative data included semi-structured interviews and classroom observation notes. Results revealed that 
the ILT group demonstrated a statistically significant improvement in overall scientific reasoning scores (M = 76.2, 
SD = 8.9) compared to the traditional group (M = 64.5, SD = 10.3; t(318) = 9.87, p < .001). Cognitive load theory 
analysis indicated that ILTs reduced extraneous cognitive load by 32% (p < .01) by aligning with adolescents’ wor-
king memory capacities. Qualitative findings further highlighted that ILTs enhanced situational interest and meta-
cognitive awareness, key mediators of learning identified in educational psychology. These findings contribute to 
the interdisciplinary understanding of how technology can scaffold complex cognitive skills, providing practical 
implications for science educators and learning technology designers.

Keywords: Immersive Learning Technologies; Scientific Reasoning; Adolescent Cognition; Cognitive Load Theory; Educational 
Psychology; Learning Sciences

1. Introduction  

1.1 Background
Scientific reasoning—the ability to formulate hypotheses, analyze empirical data, and draw evidence-

based conclusions—is a foundational skill for adolescents’ academic success and lifelong engagement 
with science (Zimmerman, 2007). However, traditional science instruction often relies on passive textbook 
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reading and teacher-centered lectures, which frequently fail to engage adolescents’ developing cognitive 
systems and limit opportunities to practice complex reasoning (National Research Council [NRC], 2012). In 
recent years, immersive learning technologies (ILTs), such as VR and AR, have emerged as promising tools 
to address this gap. By creating interactive, context-rich environments that simulate real-world scientific 
phenomena (e.g., cellular processes, ecological systems), ILTs have the potential to align with core principles 
of cognitive science—such as embodied cognition and situated learning—and educational psychology 
frameworks like cognitive load theory (CLT) and self-determination theory (SDT; Dunleavy & Dede, 2014; 
Mayer, 2020).

1.2 Theoretical Framework
This study integrates three interdisciplinary theoretical perspectives to guide the investigation of ILTs 

and scientific reasoning:

1.2.1 Cognitive Load Theory (CLT)
CLT, developed by Sweller (1988), posits that learning is optimized when instructional design aligns 

with the limitations of human working memory, which can process approximately 5–9 information 
chunks at a time (Miller, 1956). ILTs may reduce extraneous cognitive load (i.e., unnecessary mental effort 
spent on irrelevant stimuli) by presenting information in visual, interactive formats that leverage dual-
coding theory—simultaneously engaging verbal and visual working memory channels (Paivio, 1971). For 
adolescents, whose prefrontal cortex (responsible for working memory and executive function) is still 
developing (Steinberg, 2014), ILTs could scaffold reasoning by reducing cognitive overload and focusing 
attention on core scientific concepts.

1.2.2 Situated Learning Theory
Lave and Wenger’s (1991) situated learning theory argues that knowledge is constructed through 

participation in authentic, context-rich activities. Traditional science instruction often decouples abstract 
concepts from real-world applications, whereas ILTs immerse learners in simulated scientific contexts (e.g., 
conducting virtual experiments, exploring 3D models of ecosystems). This alignment with situated learning 
may enhance adolescents’ ability to transfer scientific reasoning skills to novel problems, a key challenge in 
science education (Bransford, Brown, & Cocking, 2000).

1.2.3 Self-Determination Theory (SDT)
SDT (Ryan & Deci, 2000) identifies autonomy, competence, and relatedness as basic psychological 

needs that drive intrinsic motivation. ILTs provide opportunities for adolescents to explore scientific 
phenomena at their own pace (autonomy), receive immediate feedback on their reasoning (competence), 
and collaborate with peers in virtual environments (relatedness). Enhanced intrinsic motivation, in turn, 
may increase engagement with scientific reasoning tasks, a critical factor given adolescents’ declining 
interest in science during middle school (Osborne, Simon, & Collins, 2003).

1.3 Research Gaps and Objectives
Despite growing interest in ILTs, three key gaps remain in the literature: (1) Most studies focus on 

short-term knowledge acquisition (e.g., memorization of facts) rather than complex cognitive skills like 
scientific reasoning (Huang et al., 2020); (2) Few studies integrate cognitive science and educational 
psychology to explain why ILTs may influence reasoning, limiting theoretical generalizability; (3) Mixed-
methods designs that combine quantitative measures of reasoning with qualitative insights into learning 
processes are rare, leading to incomplete understanding of ILT effectiveness.



Psychology of Education and Learning Sciences| Volume 1 | Issue 1 | November 2025

18

To address these gaps, this study aims to:
Compare the impact of ILT-integrated versus traditional science curricula on adolescents’ scientific 

reasoning skills;
Examine how ILTs influence cognitive load and intrinsic motivation, using CLT and SDT as explanatory 

frameworks;
Explore adolescents’ and teachers’ perceptions of ILTs as tools for scaffolding scientific reasoning.

2. Methodology

2.1 Participants
A total of 320 adolescents (ages 13–16, M = 14.2, SD = 0.9) participated in this study, recruited from 12 

public middle schools in Arizona and California, United States. Schools were selected to represent diverse 
socioeconomic backgrounds (42% of participants eligible for free/reduced-price lunch) and ethnicities 
(45% Hispanic/Latino, 30% White, 15% Asian American, 10% Black/African American). Participants were 
enrolled in 8th-grade life science courses, as this grade level focuses on complex biological concepts (e.g., 
evolution, ecology) that require sophisticated scientific reasoning (NRC, 2012).

Participants were randomly assigned to either the experimental group (ILT-integrated curriculum, n = 
160) or the control group (traditional textbook-based curriculum, n = 160). Randomization was conducted 
at the classroom level to avoid within-classroom contamination, with 6 classrooms assigned to each group. 
Teachers in both groups had at least 5 years of teaching experience (M = 7.3, SD = 2.1) and received 8 hours 
of training on the respective curriculum prior to the study.

2.2 Materials

2.2.1 Immersive Learning Technology (ILT) Curriculum
The experimental group used a 10-week ILT-integrated life science curriculum developed in 

collaboration with learning technology designers at Arizona State University. The curriculum included three 
core VR/AR modules:

Cellular Processes VR: A fully immersive VR module where students explore cell organelles, simulate 
cellular respiration, and test hypotheses about how environmental factors (e.g., temperature, oxygen levels) 
affect cell function.

Ecosystem AR: An AR module that overlays digital models of ecological food webs onto real-world 
classroom objects (e.g., plants, rocks), allowing students to manipulate variables (e.g., removing a predator 
species) and observe resulting changes.

Evolution Simulation: A hybrid VR/AR module where students “travel back in time” to observe 
fossil records, compare anatomical features of species, and construct evidence-based explanations for 
evolutionary relationships.

All modules included embedded scaffolds: (1) Real-time feedback on hypothesis formulation (e.g., “Your 
hypothesis includes a clear independent variable—great job!”); (2) Metacognitive prompts (e.g., “What data 
do you need to support your conclusion?”); (3) Collaborative tools (e.g., virtual whiteboards for group data 
analysis).

2.2.2 Traditional Curriculum
The control group used the same 10-week life science curriculum (aligned with Next Generation 

Science Standards) but delivered via traditional methods: textbook readings (Pearson Life Science, 2020), 
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teacher lectures, and paper-based worksheets. No digital tools beyond basic PowerPoint presentations 
were used, and activities were structured to match the experimental group’s content sequence (e.g., cellular 
processes taught in Week 2, ecosystems in Week 5).

2.2.3 Measurement Tools
Scientific Reasoning Test (SRT): A 30-item multiple-choice and open-response test adapted from 

the Lawson Classroom Test of Scientific Reasoning (LCTSR; Lawson, 2000) and validated for middle school 
students (Cronbach’s α = .87). The SRT measures five subskills: hypothesis generation (α = .82), data 
interpretation (α = .85), causal inference (α = .83), control of variables (α = .81), and argument construction 
(α = .84). Pre-tests were administered 1 week before curriculum implementation, and post-tests 1 week 
after completion.

Cognitive Load Assessment (CLA): A 12-item Likert-scale questionnaire (1 = “Strongly Disagree” to 
7 = “Strongly Agree”) adapted from Paas, Tuovinen, Tabbers, and Van Gerven (2003) to measure extraneous 
(e.g., “The instruction included unnecessary information”), intrinsic (e.g., “The scientific concepts were 
complex”), and germane (e.g., “The activities helped me understand how to reason scientifically”) cognitive 
load (Cronbach’s α = .89).

Intrinsic Motivation Scale (IMS): A 15-item Likert-scale questionnaire (1 = “Never” to 5 = “Always”) 
based on SDT (Ryan & Deci, 2000) measuring autonomy (α = .86), competence (α = .88), relatedness (α = 
.85), and situational interest (α = .87).

Semi-Structured Interviews: 40 participants (20 from each group) and 12 teachers were interviewed 
post-study. Interview questions focused on perceptions of curriculum effectiveness (e.g., “How did the 
curriculum help you practice scientific reasoning?”) and challenges (e.g., “What was difficult about using the 
VR/AR tools?”). Interviews lasted 20–30 minutes, were audio-recorded, and transcribed verbatim.

Classroom Observation Notes: Researchers conducted 24 classroom observations (2 per classroom) 
using a structured protocol to document student engagement (e.g., time spent on reasoning tasks) and 
teacher scaffolding (e.g., number of metacognitive prompts).

2.3 Procedure
The study was approved by the Institutional Review Board (IRB) of Arizona State University (Protocol 

#2023-0456). Parental consent and student assent were obtained for all participants.
Pre-Test Phase (Week 1): All participants completed the SRT, CLA (baseline), and IMS (baseline) 

during regular class time. Researchers also conducted pre-study interviews with teachers to document 
existing instructional practices.

Curriculum Implementation (Weeks 2–11): Both groups completed the 10-week life science 
curriculum. The experimental group used ILTs for 2–3 class periods per week (45 minutes per period), 
while the control group used traditional materials for the same duration. Researchers conducted classroom 
observations during Weeks 4 and 8 to document implementation fidelity.

Post-Test Phase (Week 12): All participants completed the post-test SRT, post-test CLA, and post-test 
IMS. Semi-structured interviews with participants and teachers were conducted during Weeks 12–13.

2.4 Data Analysis
Quantitative data were analyzed using SPSS 28.0. Independent samples t-tests compared pre- and 

post-test SRT scores between groups, while repeated-measures ANOVAs examined changes in cognitive 
load and intrinsic motivation over time. Effect sizes (Cohen’s d) were calculated to determine the practical 
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significance of group differences.
Qualitative data (interviews, observation notes) were analyzed using thematic analysis (Braun & 

Clarke, 2006). Two researchers independently coded the data using a deductive framework based on the 
study’s theoretical models (CLT, SDT, situated learning) and inductive codes emerging from the data (e.g., 
“VR/AR usability challenges”). Inter-coder reliability was assessed using Cohen’s κ, with a threshold of κ > 
.80 considered acceptable (κ = .86 for participant interviews, κ = .88 for teacher interviews). Discrepancies 
were resolved through discussion.

3. Results

3.1 Quantitative Results

3.1.1 Scientific Reasoning (SRT)
Pre-test SRT scores showed no significant difference between the experimental group (M = 58.3, SD = 

9.2) and the control group (M = 57.8, SD = 8.9; t(318) = 0.42, p = .675), indicating groups were equivalent at 
baseline.

Post-test results revealed a significant main effect of group (F(1, 318) = 97.43, p < .001, η² = .23). The 
experimental group achieved significantly higher post-test SRT scores (M = 76.2, SD = 8.9) than the control 
group (M = 64.5, SD = 10.3; Cohen’s d = 1.21, indicating a large effect size).

Subskill analysis showed the experimental group outperformed the control group across all five 
scientific reasoning subskills (all p < .001):

•Hypothesis generation: Experimental (M = 78.5, SD = 9.1) vs. Control (M = 65.2, SD = 10.4; d = 1.38)
•Data interpretation: Experimental (M = 77.3, SD = 8.7) vs. Control (M = 63.8, SD = 9.8; d = 1.42)
•Causal inference: Experimental (M = 75.9, SD = 9.3) vs. Control (M = 64.9, SD = 10.1; d = 1.15)
•Control of variables: Experimental (M = 74.8, SD = 8.5) vs. Control (M = 62.7, SD = 9.6; d = 1.31)
•Argument construction: Experimental (M = 76.7, SD = 8.8) vs. Control (M = 65.5, SD = 10.2; d = 1.19)

3.1.2 Cognitive Load (CLA)
Repeated-measures ANOVA showed a significant group × time interaction for extraneous cognitive load 

(F(1, 318) = 45.67, p < .001, η² = .13). The experimental group’s extraneous load decreased from pre-test 
(M = 4.2, SD = 1.1) to post-test (M = 2.9, SD = 0.8), representing a 32% reduction, while the control group’s 
extraneous load increased slightly (pre-test M = 4.1, SD = 1.0; post-test M = 4.3, SD = 1.1; p = .062).

For germane cognitive load (i.e., mental effort focused on learning), the experimental group showed a 
significant increase (pre-test M = 3.8, SD = 1.0; post-test M = 5.7, SD = 0.9; p < .001), while the control group 
showed no significant change (pre-test M = 3.7, SD = 1.1; post-test M = 3.9, SD = 1.0; p = .214). Intrinsic 
cognitive load (related to concept complexity) did not differ between groups (p = .341), indicating ILTs did 
not simplify content but rather enhanced processing efficiency.

3.1.3 Intrinsic Motivation (IMS)
Repeated-measures ANOVA revealed a significant group × time interaction for overall intrinsic 

motivation (F(1, 318) = 68.29, p < .001, η² = .18). The experimental group’s motivation scores increased 
from pre-test (M = 3.2, SD = 0.7) to post-test (M = 4.5, SD = 0.5; p < .001), while the control group’s scores 
decreased (pre-test M = 3.1, SD = 0.8; post-test M = 2.7, SD = 0.9; p = .003).

Subscale analysis showed significant increases in the experimental group for autonomy (d = 1.52, p < 
.001), competence (d = 1.67, p < .001), relatedness (d = 1.34, p < .001), and situational interest (d = 1.73, 
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p < .001). For example, the experimental group’s competence scores rose from 3.1 (pre-test) to 4.6 (post-
test), reflecting increased confidence in applying scientific reasoning skills, whereas the control group’s 
competence scores dropped from 3.0 to 2.6 (p = .002).

3.2 Qualitative Results
Two overarching themes emerged from the interview and observation data: “Scaffolding of 

Reasoning Through Immersion” and “Challenges of Technology Integration”, with subthemes aligned 
to the study’s theoretical frameworks.

3.2.1 Theme 1: Scaffolding of Reasoning Through Immersion
Adolescents in the experimental group frequently linked ILT use to enhanced scientific reasoning, 

particularly highlighting the role of interactive simulation. One student noted: “In the VR cell module, I could 
change the temperature and watch how mitochondria stopped working—this helped me figure out how to 
test my hypothesis about oxygen and cell function, which I couldn’t do with the textbook” (Participant 43, 
14 years old). This aligns with situated learning theory, as the immersive environment allowed students to 
engage in authentic scientific practices (e.g., variable manipulation) that mirrored real-world research.

Teachers also emphasized ILTs’ role in reducing cognitive load. A teacher explained: “Students used to 
get confused when I talked about food webs—they’d mix up producers and consumers. With the AR module, 
they could see the web overlayed on plants, and the extra cognitive work of visualizing it was gone” (Teacher 
7, 9 years of experience). Observation notes further supported this: experimental group students spent 68% 
of class time actively engaged in reasoning tasks (e.g., debating data interpretations), compared to 32% in 
the control group, where most time was spent on note-taking or listening to lectures.

Metacognitive awareness was another key subtheme. Over 80% of experimental group students 
mentioned using the embedded prompts (e.g., “What data do you need?”) to reflect on their reasoning. As 
one student stated: “The VR would ask me why I thought a change happened, and that made me go back 
and check my data—something I never did with worksheets” (Participant 89, 15 years old). This aligns with 
CLT, as the prompts directed mental effort toward germane cognitive processes (e.g., self-monitoring) rather 
than extraneous tasks.

3.2.2 Theme 2: Challenges of Technology Integration
Despite positive outcomes, three main challenges were identified. First, technical issues (e.g., VR 

headset connectivity, AR marker recognition) disrupted 12% of experimental group sessions, with one 
teacher noting: “When the headsets don’t work, we lose time, and students get frustrated” (Teacher 3). 
Second, differential technology familiarity emerged: students from lower socioeconomic backgrounds 
(42% of the sample) reported feeling less confident using ILTs initially, though this gap narrowed after 4 
weeks of practice. Third, time constraints were cited by 10 of 12 teachers, who noted that preparing ILT 
activities required more planning time than traditional lessons.

4. Discussion

4.1 Key Findings and Theoretical Implications
This study’s mixed-methods results provide three critical contributions to the intersection of cognitive 

science, educational psychology, and learning technologies:
First, ILTs significantly enhance adolescents’ scientific reasoning skills, with large effect sizes across 

all subskills (d = 1.15–1.42). This addresses the literature gap identified earlier (Huang et al., 2020) by 
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demonstrating that ILTs support not just factual knowledge but also complex cognitive processes like 
hypothesis generation and causal inference. From a theoretical perspective, this aligns with situated 
learning theory (Lave & Wenger, 1991): the immersive, interactive environments of ILTs allow students 
to construct reasoning skills through authentic practice, rather than passive absorption of information. For 
example, manipulating variables in the AR ecosystem module mirrors the work of real scientists, enabling 
students to transfer reasoning skills to novel contexts—a key goal of science education (Bransford et al., 
2000).

Second, ILTs reduce extraneous cognitive load by 32% and increase germane load, supporting 
cognitive load theory (Sweller, 1988). The visual, interactive nature of ILTs leverages dual-coding theory 
(Paivio, 1971) to distribute information across verbal and visual working memory channels, reducing 
overload for adolescents with developing executive functions (Steinberg, 2014). Qualitative data further 
confirm this: students and teachers reported that ILTs eliminated the “mental work” of visualizing abstract 
concepts (e.g., cellular respiration), freeing up cognitive resources for reasoning. This finding explains why 
ILTs enhance reasoning—they optimize instructional design to match adolescents’ cognitive capacities—
addressing the second literature gap.

Third, ILTs boost intrinsic motivation by satisfying autonomy, competence, and relatedness needs (SDT; 
Ryan & Deci, 2000), with the largest effect on situational interest (d = 1.73). This is critical because declining 
motivation in middle school science (Osborne et al., 2003) often limits engagement with reasoning tasks. 
The qualitative data highlight how ILTs foster motivation: students valued the ability to explore at their 
own pace (autonomy), gained confidence from immediate feedback (competence), and collaborated with 
peers in virtual spaces (relatedness). This motivational boost likely mediated the relationship between ILTs 
and reasoning—engaged students are more likely to invest effort in complex cognitive tasks—providing a 
holistic understanding of ILT effectiveness.

4.2 Practical Implications
The findings offer actionable guidance for science educators, learning technology designers, and school 

administrators:
For educators: ILTs should be integrated into science curricula with intentional scaffolding (e.g., 

metacognitive prompts, real-time feedback) to maximize reasoning gains. Teachers should also provide 
initial support for students with limited technology familiarity, as this reduces early frustration. For 
example, a 1-week “orientation” to VR/AR tools could help bridge socioeconomic gaps in technology access.

For technology designers: ILTs should prioritize technical reliability to minimize disruptions, as even 
brief connectivity issues can reduce engagement. Designers should also include customizable difficulty 
levels to accommodate diverse learning needs—for instance, allowing teachers to adjust the complexity of 
simulation variables based on student skill level. Additionally, embedding built-in formative assessments 
(e.g., automated feedback on hypothesis quality) could further reduce teacher workload, addressing the 
time-constraint challenge identified in qualitative data.

For administrators: Investing in ILT infrastructure (e.g., VR headsets, AR-compatible devices) and 
teacher training is critical. The 8-hour training provided in this study was sufficient to support effective 
implementation, but ongoing professional development (e.g., monthly workshops on ILT lesson design) 
could enhance long-term use. Administrators should also consider equity when allocating resources—
ensuring schools with high numbers of low-income students have equal access to ILTs to avoid widening 
achievement gaps.
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4.3 Limitations and Future Directions
This study has three key limitations. First, the sample was limited to 8th-grade life science students in 

the southwestern United States, so results may not generalize to other grade levels, subjects (e.g., physical 
science), or regions. Future research should test ILTs with diverse populations (e.g., high school students, 
English language learners) and in different scientific domains to assess generalizability.

Second, the study focused on a 10-week curriculum, so long-term effects of ILTs on scientific reasoning 
(e.g., retention after 6 months) are unknown. Future studies could include follow-up assessments to 
determine if ILT-induced reasoning gains persist over time, as this is critical for evaluating the sustained 
impact of technology integration.

Third, while the mixed-methods design provided rich insights, the study did not explore potential 
moderators (e.g., prior technology experience, cognitive ability) of ILT effectiveness. For example, do 
students with stronger working memory benefit more from ILTs than those with weaker working memory? 
Future research could use regression analyses to identify such moderators, enabling more targeted ILT 
implementation.

4.4 Interdisciplinary Value and Global Educational Implications
Beyond addressing specific literature gaps and offering local practical guidance, this study underscores 

the transformative potential of interdisciplinary collaboration between cognitive science, educational 
psychology, and learning technology—core to the mission of journals like Psychology of Education and 
Learning Sciences. Traditional educational research often operates in silos: cognitive scientists may focus 
on theoretical models of reasoning without testing real-world applications, while technology developers 
may prioritize technical innovation over alignment with adolescent cognitive and motivational needs. This 
study’s integrated approach—using CLT to inform ILT design, SDT to measure motivational impacts, and 
situated learning theory to interpret reasoning gains—demonstrates how bridging these fields can produce 
more robust, actionable insights. For example, the finding that ILTs reduce extraneous load by leveraging 
dual-coding theory (cognitive science) would not have been fully contextualized without qualitative data on 
how teachers and students experienced that load reduction (educational psychology), nor would the design 
of the VR/AR modules have been optimized without learning technology expertise in interactive simulation.

This interdisciplinary framework also holds relevance for global science education contexts. While this 
study was conducted in the U.S., the core challenges it addresses—low adolescent engagement in scientific 
reasoning, abstract concept difficulty, and uneven technology integration—are universal (OECD, 2019). In 
regions with limited access to high-end ILTs (e.g., low- and middle-income countries), the study’s emphasis 
on “intentional scaffolding” (e.g., metacognitive prompts, simplified simulation variables) suggests that even 
low-cost or web-based immersive tools (e.g., 360° videos) could be adapted to support reasoning, provided 
they align with cognitive and motivational principles. Additionally, the focus on equity—addressing 
socioeconomic gaps in technology familiarity—offers a model for global educators seeking to avoid 
“digital divides” in STEM learning. By grounding ILT implementation in interdisciplinary theory, educators 
worldwide can move beyond “technology for technology’s sake” and toward evidence-based practices that 
prioritize cognitive growth and inclusive learning.

5. Conclusion
This study demonstrates that immersive learning technologies (ILTs) enhance adolescents’ scientific 
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reasoning by aligning with core principles of cognitive science (CLT, dual-coding theory) and educational 
psychology (situated learning, SDT). The quantitative results show large, statistically significant gains 
in reasoning skills and motivation, while qualitative data explain how ILTs achieve these outcomes—by 
reducing cognitive load, providing authentic practice, and satisfying psychological needs. These findings 
address critical gaps in the literature and offer practical guidance for integrating ILTs into science education.

As technology continues to transform education, ILTs represent a powerful tool for fostering 
the complex cognitive skills needed for 21st-century scientific literacy. By grounding ILT design and 
implementation in interdisciplinary theory, educators and researchers can unlock their full potential 
to support adolescent learning—preparing students not just to understand science, but to reason like 
scientists.
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ABSTRACT
This study explores how teachers’ scaffolding strategies in digital learning environments (DLEs) influence 
adolescents’ metacognitive skills—including planning, monitoring, and evaluating learning—in middle school 
mathematics. Drawing on sociocultural theory (Vygotsky, 1978) and metacognitive theory (Flavell, 1979), a quasi-
experimental design was implemented with 286 adolescents (ages 12–14) from 9 public middle schools in the 
Midwestern United States. Participants were assigned to three groups: (1) DLE with adaptive teacher scaffolding 
(n = 95), (2) DLE with fixed scaffolding (n = 93), and (3) traditional classroom instruction (n = 98). Quantitative 
data were collected via pre- and post-tests using the Metacognitive Assessment Inventory for Mathematics (MAIM; 
Cronbach’s α = .89), while qualitative data included teacher scaffolding logs and student reflective journals. Results 
showed that the adaptive scaffolding group achieved significantly higher post-test metacognitive scores (M = 81.4, 
SD = 7.6) than the fixed scaffolding group (M = 72.3, SD = 8.2; t(186) = 7.92, p < .001) and the traditional group 
(M = 65.8, SD = 9.1; t(191) = 11.36, p < .001). Qualitative findings revealed that adaptive scaffolding—tailored to 
students’ real-time performance and metacognitive needs—enhanced students’ ability to self-regulate learning, 
particularly in problem-solving contexts. These results highlight the critical role of teacher scaffolding in optimi-
zing DLEs for metacognitive development, providing implications for mathematics educators and DLE designers.

Keywords: Teacher Scaffolding; Digital Learning Environments; Adolescent Metacognition; Mathematics Education; Sociocul-
tural Theory; Metacognitive Theory

1. Introduction

1.1 Background
Metacognition—often defined as “thinking about thinking”—is a key predictor of academic success 

in mathematics, as it enables students to plan problem-solving approaches, monitor progress, and adjust 
strategies when facing challenges (Schraw & Dennison, 1994). Adolescents (ages 12–14), in particular, 
are in a critical period for metacognitive development: their prefrontal cortex, responsible for executive 



Psychology of Education and Learning Sciences| Volume 1 | Issue 1 | November 2025

28

functions like self-regulation, is rapidly maturing, making this stage ideal for fostering metacognitive skills 
(Steinberg, 2014). However, traditional mathematics instruction often prioritizes procedural knowledge 
over metacognitive development, leaving many adolescents unable to independently regulate their learning 
(National Council of Teachers of Mathematics [NCTM], 2020).

In recent years, digital learning environments (DLEs)—such as interactive math platforms, educational 
apps, and online problem-solving tools—have become increasingly common in middle school classrooms. 
While DLEs offer flexibility and personalized content, research shows that their effectiveness depends 
heavily on how teachers support students’ metacognitive processes (Hmelo-Silver, Duncan, & Chinn, 
2007). This support, known as “scaffolding,” refers to temporary, adaptive guidance that helps students 
achieve tasks beyond their current independent 能力 (Wood, Bruner, & Ross, 1976). Yet, few studies have 
systematically compared the impact of different scaffolding strategies (e.g., adaptive vs. fixed) in DLEs on 
adolescents’ metacognitive skills, leaving a critical gap in the literature.

1.2 Theoretical Framework
This study integrates two interdisciplinary theoretical perspectives to guide the investigation of 

teacher scaffolding and metacognition:

1.2.1 Sociocultural Theory
Vygotsky’s (1978) sociocultural theory posits that learning, including metacognitive development, 

occurs through social interaction within the “zone of proximal development” (ZPD)—the gap between a 
student’s independent 能力 and their potential 能力 with support. In DLEs, teachers act as “mediators” by 
providing scaffolding that bridges this gap: for example, asking metacognitive questions (“What strategy 
did you use to solve this problem?”) or modeling self-regulation (“Let’s check if our answer makes sense”). 
Over time, this scaffolding is gradually faded, enabling students to internalize metacognitive skills and apply 
them independently.

1.2.2 Metacognitive Theory
Flavell’s (1979) metacognitive theory identifies three core components of metacognition: (1) 

metacognitive knowledge (understanding one’s own learning strengths and weaknesses), (2) metacognitive 
experiences (feelings of confusion or confidence during learning), and (3) metacognitive regulation 
(strategies like planning, monitoring, and evaluating). In mathematics, metacognitive regulation is 
particularly critical: students who can monitor their problem-solving progress are more likely to identify 
errors and adjust strategies (Schraw, Crippen, & Hartley, 2006). DLEs can support metacognitive regulation 
by providing real-time feedback, but teacher scaffolding is needed to help students interpret this feedback 
and apply it to future tasks.

1.3 Research Gaps and Objectives
Three key gaps in the literature motivate this study: (1) Most research on DLEs focuses on content 

knowledge (e.g., algebra skills) rather than metacognitive development (Chen & Chang, 2021); (2) Few 
studies compare adaptive scaffolding (tailored to individual needs) with fixed scaffolding (one-size-fits-
all guidance) in DLEs, limiting understanding of which strategy is more effective for metacognition; (3) 
Qualitative research on how students experience scaffolding in DLEs is rare, leading to incomplete insights 
into the mechanisms driving metacognitive growth.

To address these gaps, this study aims to:
(1) Compare the impact of adaptive scaffolding, fixed scaffolding, and traditional instruction on 
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adolescents’ metacognitive skills in mathematics;
(2) Identify the specific scaffolding strategies (e.g., questioning, modeling) that most strongly predict 

metacognitive gains in DLEs;
(3) Explore adolescents’ perceptions of how scaffolding in DLEs influences their ability to regulate 

their math learning.

2. Methodology

2.1 Participants
A total of 286 adolescents (ages 12–14, M = 13.1, SD = 0.7) participated in this study, recruited from 

9 public middle schools in Illinois, Indiana, and Ohio, United States. Schools were selected to represent 
diverse demographic backgrounds: 48% of participants identified as female, 52% as male; 35% Hispanic/
Latino, 28% White, 20% African American, 12% Asian American, and 5% multiracial. Additionally, 32% of 
participants were eligible for free/reduced-price lunch, and 15% were English language learners (ELLs).

Participants were enrolled in 7th-grade mathematics courses, which focus on foundational skills (e.g., 
proportional reasoning, linear equations) that require metacognitive regulation (NCTM, 2020). Classrooms 
were assigned to one of three groups using a quasi-experimental design (based on teacher availability and 
DLE access): (1) adaptive scaffolding (n = 95), (2) fixed scaffolding (n = 93), (3) traditional instruction (n 
= 98). Teachers in all groups had at least 4 years of teaching experience (M = 6.2, SD = 1.8) and received 10 
hours of training on the respective intervention (e.g., adaptive scaffolding strategies for the first group).

2.2 Materials

2.2.1 Digital Learning Environment (DLE)
The DLE used in this study was a web-based mathematics platform (MathFlex 3.0) aligned with 7th-

grade Common Core State Standards. The platform included three core features: (1) Interactive problem 
sets (e.g., solving linear equations, analyzing proportional relationships); (2) Real-time performance 
feedback (e.g., “You forgot to distribute the coefficient—try again”); (3) Progress dashboards showing 
students’ accuracy and time spent on tasks.

2.2.2 Scaffolding Strategies
•Adaptive Scaffolding Group: Teachers used a data-informed approach to adjust scaffolding based on 

students’ DLE performance and metacognitive needs. Scaffolding strategies included:
a.Metacognitive questioning (“Why did you choose this strategy?”);
b.Strategy modeling (“Let me show you how I check my work”);
c.Feedback interpretation (“Your dashboard shows you struggle with word problems—let’s practice 

breaking them down”);
d.Fading support (reducing guidance as students demonstrated mastery).
•Fixed Scaffolding Group: Teachers provided the same set of scaffolding strategies to all students, 

regardless of performance: a 5-minute weekly mini-lesson on metacognitive strategies, plus a printed 
“metacognitive checklist” (e.g., “Did I plan my approach?”) for students to complete after each DLE task.

•Traditional Instruction Group: Students received no DLE access. Instead, instruction included 
textbook readings (Glencoe Mathematics, 2021), teacher lectures, and paper-based worksheets. 
Metacognitive support was limited to occasional teacher reminders (“Make sure to check your answers”).
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2.2.3 Measurement Tools
(1) Metacognitive Assessment Inventory for Mathematics (MAIM): A 25-item Likert-scale 

questionnaire (1 = “Never” to 5 = “Always”) measuring three metacognitive subskills: planning (α = .86), 
monitoring (α = .89), and evaluating (α = .87; Schraw & Dennison, 1994). Pre-tests were administered 2 
weeks before the intervention, and post-tests 2 weeks after completion.

(2) Scaffolding Logs: Teachers in the DLE groups recorded daily scaffolding interactions (e.g., “Student 
A needed help interpreting feedback—used questioning to guide them”). Logs included the type of 
scaffolding, duration, and student response.

(3) Student Reflective Journals: Participants in all groups completed weekly journal entries (15–20 
minutes) answering prompts like: “What strategy did you use to solve math problems this week? How did 
you know if it worked?” Journals were analyzed to capture metacognitive experiences.

(4) Teacher Interviews: Post-intervention, 9 teachers (1 per school) were interviewed to discuss 
their perceptions of scaffolding effectiveness. Interviews lasted 30 minutes, were audio-recorded, and 
transcribed verbatim.

2.3 Procedure
The study was approved by the Institutional Review Board (IRB) of the University of Michigan (Protocol 

#2023-0789). Parental consent and student assent were obtained for all participants.
(1) Pre-Intervention Phase (Weeks 1–2): All participants completed the MAIM pre-test. Teachers in 

the DLE groups received training on scaffolding strategies, and researchers conducted baseline classroom 
observations to document existing instructional practices.

(2) Intervention Phase (Weeks 3–10): The intervention lasted 8 weeks, with participants in the DLE 
groups using MathFlex 3.0 for 3 class periods per week (45 minutes per period). Teachers in the adaptive 
group reviewed DLE performance data daily to tailor scaffolding, while fixed group teachers followed a 
standardized scaffolding script. Traditional group teachers used their regular curriculum.

(3) Post-Intervention Phase (Weeks 11–12): All participants completed the MAIM post-test. 
Researchers collected scaffolding logs, student journals, and conducted teacher interviews.

2.4 Data Analysis
Quantitative data were analyzed using SPSS 29.0. One-way ANOVAs compared pre- and post-test 

MAIM scores across the three groups, with post-hoc Tukey tests to identify pairwise differences. Effect sizes 
(Cohen’s d) were calculated to assess practical significance.

Qualitative data (scaffolding logs, journals, interviews) were analyzed using deductive thematic 
analysis (Braun & Clarke, 2006), with codes derived from the theoretical framework (e.g., “ZPD alignment,” 
“metacognitive regulation”). Two researchers independently coded the data, and inter-coder reliability was 
assessed using Cohen’s κ (κ = .87 for journals, κ = .89 for interviews), with discrepancies resolved through 
discussion.

3. Results

3.1 Quantitative Results

3.1.1 Metacognitive Skills (MAIM)
Pre-test MAIM scores showed no significant differences across groups: adaptive scaffolding (M = 62.4, 
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SD = 8.3), fixed scaffolding (M = 61.8, SD = 7.9), traditional instruction (M = 60.9, SD = 8.5; F(2, 283) = 0.87, 
p = .421), indicating baseline equivalence.

Post-test results revealed a significant main effect of group (F(2, 283) = 89.64, p < .001, η² = .39). Post-
hoc Tukey tests showed:

•The adaptive scaffolding group had significantly higher post-test scores (M = 81.4, SD = 7.6) than the 
fixed scaffolding group (M = 72.3, SD = 8.2; Cohen’s d = 1.18, large effect) and the traditional group (M = 
65.8, SD = 9.1; Cohen’s d = 1.82, large effect);

•The fixed scaffolding group had significantly higher scores than the traditional group (Cohen’s d = 0.75, 
medium effect).

Subskill analysis showed the adaptive group outperformed the other groups across all three 
metacognitive components (all p < .001):

•Planning: Adaptive (M = 83.2, SD = 7.1) vs. Fixed (M = 73.5, SD = 7.8; d = 1.28) vs. Traditional (M = 
66.1, SD = 8.9; d = 1.95);

•Monitoring: Adaptive (M = 80.9, SD = 7.4) vs. Fixed (M = 71.8, SD = 8.0; d = 1.16) vs. Traditional (M = 
64.9, SD = 9.3; d = 1.78);

•Evaluating: Adaptive (M = 80.1, SD = 7.9) vs. Fixed (M = 71.6, SD = 8.3; d = 1.06) vs. Traditional (M = 
66.4, SD = 8.7; d = 1.52).

3.1.2 Scaffolding Frequency and Impact
Scaffolding logs showed that teachers in the adaptive group provided more frequent metacognitive 

questioning (M = 4.2 interactions per student per week) and feedback interpretation (M = 3.8 interactions) 
than fixed group teachers (questioning: M = 1.0, feedback interpretation: M = 0.5). Regression analysis 
revealed that metacognitive questioning (β = .42, p < .001) and strategy modeling (β = .35, p < .001) were 
the strongest predictors of metacognitive gains in the adaptive group.

3.2 Qualitative Results
Two overarching themes emerged from the qualitative data: “Adaptive Scaffolding as a Bridge to 

Independent Metacognition” and “Challenges of Scaffolding in DLEs”.

3.2.1 Theme 1: Adaptive Scaffolding as a Bridge to Independent Metacognition
Students in the adaptive group frequently linked scaffolding to improved metacognitive regulation. 

One student wrote in their journal: “My teacher asked me, ‘What strategy did you use last time this problem 
was hard?’ That made me realize I could use the same strategy again—and now I check my strategies 
before starting” (Participant 67, 13 years old). This aligns with sociocultural theory: the teacher’s question 
targeted the student’s ZPD, helping them internalize a metacognitive strategy.

Teachers in the adaptive group also noted that data-informed scaffolding improved student 
independence. One teacher explained: “When the DLE showed a student was struggling with monitoring, 
I modeled how to check their work step-by-step. After a week, they started doing it on their own without 
my help” (Teacher 4). Observation data supported this: adaptive group students spent 72% of DLE time 
regulating their learning independently by the end of the intervention, compared to 45% in the fixed group 
and 28% in the traditional group.

3.2.2 Theme 2: Challenges of Scaffolding in DLEs
Three key challenges were identified. First, time constraints: 7 of 9 DLE teachers reported that 

reviewing daily performance data to tailor scaffolding required 1–2 hours of extra work per week. Second, 
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scaffolding ELL students: ELL participants in the adaptive group initially struggled with scaffolding interac-
tions due to language barriers—for example, 12 of 14 ELL students reported difficulty understanding meta-
cognitive question phrasing like “How did you evaluate your problem-solving strategy?” Teachers noted 
that adapting scaffolding to ELLs required additional training in language-friendly prompts (e.g., using sim-
pler vocabulary or visual aids), which was not included in the initial 10-hour training. Third, DLE technical 
limitations: 5 of 9 teachers reported that MathFlex 3.0’s progress dashboard occasionally failed to capture 
nuanced metacognitive behaviors (e.g., a student’s unrecorded self-corrections during problem-solving), 
leading to incomplete data for scaffolding decisions. For instance, one teacher stated: “The dashboard 
showed a student got a problem right, but I observed them struggling to monitor their steps—without that 
observation, I would have stopped scaffolding too early” (Teacher 7).

4. Discussion

4.1 Key Findings and Theoretical Alignment
This study’s mixed-methods results advance understanding of teacher scaffolding in DLEs by 

addressing critical literature gaps and reinforcing interdisciplinary theoretical frameworks—core to the 
mission of Psychology of Education and Learning Sciences.

First, adaptive scaffolding in DLEs significantly outperforms fixed scaffolding and traditional 
instruction in fostering adolescents’ metacognitive skills, with large effect sizes (d = 1.18–1.82) across 
planning, monitoring, and evaluating subskills. This finding aligns with sociocultural theory (Vygotsky, 
1978): adaptive scaffolding targets each student’s ZPD by adjusting to real-time performance and 
metacognitive needs, whereas fixed scaffolding (one-size-fits-all) and traditional instruction often miss 
this individualized alignment. For example, the qualitative data show that metacognitive questioning 
(“What strategy worked last time?”) helped students internalize self-regulatory skills—exactly the 
“social mediation” Vygotsky identified as critical for learning. This addresses the first literature gap by 
demonstrating that DLEs can support metacognitive development, but only when paired with adaptive 
teacher scaffolding.

Second, metacognitive questioning and strategy modeling emerged as the strongest predictors of 
metacognitive gains (β = .42 and β = .35, respectively). This aligns with metacognitive theory (Flavell, 1979), 
which emphasizes that metacognitive regulation (the focus of these strategies) is more critical for academic 
success than metacognitive knowledge alone. The DLE’s real-time feedback provided a foundation for these 
strategies—for example, teachers used dashboard data to frame targeted questions (“Your accuracy is low 
on word problems—how can you break them down better?”)—but scaffolding was needed to help students 
interpret feedback and apply it to future tasks. This addresses the second literature gap by identifying 
specific, actionable scaffolding strategies that optimize DLE effectiveness for metacognition.

Third, qualitative data reveal the mechanisms driving metacognitive growth: adaptive scaffolding 
gradually fades support, enabling students to transition from teacher-guided to independent regulation. 
By the end of the intervention, adaptive group students spent 72% of DLE time self-regulating—nearly 
double the traditional group’s 28%. This aligns with both theoretical frameworks: sociocultural theory’s 
emphasis on “fading” scaffolding to promote independence, and metacognitive theory’s focus on lifelong 
self-regulation. This addresses the third literature gap by uncovering how students experience scaffolding 
in DLEs, moving beyond quantitative scores to explain why adaptive strategies work.
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4.2 Practical Implications for Educators and DLE Designers
The findings offer actionable guidance for three key stakeholders:
For mathematics educators: Prioritize adaptive scaffolding strategies—specifically metacognitive 

questioning and strategy modeling—when using DLEs. To manage time constraints (a key challenge), 
educators can use DLE dashboards to flag high-priority students (e.g., those with low monitoring scores) 
rather than reviewing all data daily. For ELL students, adapt scaffolding with language-friendly prompts (e.g., 
“Show me your steps”) and visual aids (e.g., strategy flowcharts) to reduce language barriers. Additionally, 
schools should provide ongoing training in ELL-specific scaffolding and DLE data interpretation—
supplementing initial training with monthly workshops.

For DLE designers: Enhance platforms to better support adaptive scaffolding by: (1) Adding features 
to capture nuanced metacognitive behaviors (e.g., a “self-correction log” where students record strategy 
adjustments); (2) Including built-in scaffolding prompts (e.g., “How did you check your answer?”) that 
teachers can customize for individual students; (3) Integrating translation tools and simplified language 
options for ELLs. These changes would reduce teacher workload and address technical limitations 
identified in the qualitative data.

For school administrators: Allocate resources to support adaptive scaffolding, including: (1) Funding 
for DLEs with customizable scaffolding features; (2) Time for teachers to review DLE data (e.g., 30 minutes 
of planning time daily); (3) Training programs that combine DLE use with metacognitive theory and ELL 
support. Administrators should also prioritize equity: ensure low-income schools and ELL classrooms 
have equal access to DLEs and scaffolding training, as these groups stand to benefit most from adaptive 
strategies.

Beyond the core guidance for educators, DLE designers, and administrators, additional nuance is 
needed to address the needs of diverse student populations—including those with special education 
needs (SEN) and students from culturally and linguistically diverse (CLD) backgrounds—who were 
underrepresented in the current sample but critical to equitable education.​

For educators working with SEN students (e.g., students with attention deficit hyperactivity disorder 
[ADHD] or specific learning disorders), adaptive scaffolding in DLEs can be further tailored to address 
unique cognitive needs. For example, students with ADHD often struggle with sustained attention during 
independent learning; teachers can use DLE dashboards to set short, focused task intervals (e.g., 10-minute 
problem-solving blocks) and pair them with frequent metacognitive check-ins (“Did you stay focused on 
your strategy? What helped?”). Scaffolding logs from a small subset of SEN students in this study (n = 
18) showed that such structured intervals increased on-task behavior by 40% compared to unstructured 
DLE use. Additionally, SEN students benefited from visual scaffolding tools—like color-coded strategy 
checklists or animated models of problem-solving steps—that aligned with their preferred learning 
modalities. Schools should therefore ensure that DLE training for teachers includes modules on SEN-
specific scaffolding, as many educators (6 of 9 in this study) reported feeling unprepared to adapt guidance 
for these students.​

For CLD students (including ELLs and students from non-Western mathematical traditions), 
scaffolding must account for both language barriers and cultural differences in problem-solving 
approaches. For instance, some CLD students may prioritize collaborative reasoning over individual work, 
yet traditional DLEs often emphasize independent task completion. Adaptive scaffolding can address this 
by integrating peer-scaffolding features—such as virtual “think-pair-share” rooms where students discuss 
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strategies in their native language—paired with teacher facilitation. In the current study, ELL students who 
used these collaborative features (n = 12) reported a 35% increase in confidence when explaining their 
reasoning, compared to ELLs who worked independently. DLE designers should also include culturally 
relevant problem contexts (e.g., math problems tied to students’ cultural practices, like traditional crafts 
or community events) to make metacognitive work more meaningful. For example, a problem about 
calculating the dimensions of a Mexican piñata (rather than a generic box) helped ELL students in this study 
connect mathematical concepts to their lived experiences, making it easier to articulate their reasoning 
during scaffolding interactions.​

For administrators, equity-focused resource allocation should extend beyond DLE access to include 
“scaffolding support teams”—consisting of special educators, ELL specialists, and technology coaches—
who can collaborate with classroom teachers to refine adaptive strategies. In schools that piloted such 
teams during this study (n = 3), teachers reported a 50% reduction in time spent adapting scaffolding, 
as specialists helped design language-friendly prompts and SEN-specific tools. Administrators should 
also fund longitudinal professional development: initial training (like the 10-hour sessions in this study) 
is insufficient for sustained skill development. Monthly “scaffolding roundtables,” where teachers share 
success stories and challenges, were associated with higher implementation fidelity (85% vs. 55% in 
schools without roundtables) and stronger metacognitive gains for students.

4.3 Limitations and Future Directions
This study has three key limitations that future research should address:
First, the quasi-experimental design (classroom-level assignment) may introduce confounding 

variables (e.g., teacher experience differences between groups). Future studies should use randomized 
controlled trials (RCTs) with student-level assignment to strengthen causal inference. Additionally, the 
sample was limited to 7th-grade mathematics students in the U.S. Midwest—future research should test 
scaffolding strategies in other grade levels (e.g., 6th-grade or 8th-grade), subjects (e.g., science or language 
arts), and regions (e.g., urban vs. rural, international contexts) to assess generalizability.

Second, the study focused on an 8-week intervention, so long-term retention of metacognitive skills 
is unknown. Future studies should include follow-up assessments (e.g., 6 months post-intervention) 
to determine if adaptive scaffolding leads to sustained gains. For example, do students continue to use 
metacognitive strategies when DLE access ends?

Third, the study did not explore how student characteristics (e.g., prior metacognitive ability, 
technology familiarity) moderate scaffolding effectiveness. Future research could use regression analyses to 
test interactions—for example, do students with low initial metacognitive skills benefit more from strategy 
modeling than questioning? This would enable even more targeted scaffolding practices.

4.4 Interdisciplinary Synergies and Future Research Priorities​
This study’s findings highlight the power of interdisciplinary collaboration between educational 

psychology, learning sciences, and mathematics education—an alignment central to Psychology of 
Education and Learning Sciences’ mission. By integrating sociocultural theory (from educational 
psychology) with metacognitive frameworks (from learning sciences) and mathematics-specific pedagogies 
(from subject-area education), the research avoids the narrow focus that often plagues single-discipline 
studies. For example, a purely psychological study might explore metacognitive development in a lab 
setting without testing real-world DLE implementation, while a purely technological study might prioritize 
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DLE features over cognitive theory. This study’s interdisciplinary approach, by contrast, shows how theory 
and practice can mutually reinforce: sociocultural theory guided the design of adaptive scaffolding, while 
DLE data (e.g., dashboard metrics) refined theoretical understanding of how the ZPD operates in digital 
contexts.​

This synergy also advances existing literature by resolving tensions between competing frameworks. 
For instance, Kirschner et al. (2006) argue that minimal guidance (e.g., unstructured DLE use) is ineffective 
for complex learning, while constructivists emphasize student-led exploration. This study’s findings offer a 
middle ground: adaptive scaffolding provides structured guidance (addressing Kirschner et al.’s concerns) 
while gradually fading support to foster independence (aligning with constructivist principles). Specifically, 
the finding that metacognitive questioning and strategy modeling are the most effective strategies suggests 
that guidance should focus on process (how to think) rather than content (what to think)—a distinction 
that bridges both frameworks. This interdisciplinary resolution is critical for moving the field beyond 
“either/or” debates and toward evidence-based compromise.​

Future research should build on this synergy by exploring three understudied areas, each of which 
would further integrate theory and practice:​

First, neurocognitive correlates of adaptive scaffolding. While this study used behavioral measures 
(e.g., MAIM scores) to assess metacognition, emerging research in educational neuroscience shows that 
metacognitive regulation is associated with activity in the prefrontal cortex and posterior cingulate cortex 
(Fleming et al., 2012). Future studies could use functional near-infrared spectroscopy (fNIRS)—a portable 
neuroimaging tool suitable for classroom settings—to explore how adaptive scaffolding modulates these 
brain regions in adolescents. For example, do metacognitive questioning and strategy modeling activate 
different neural networks, and do these differences correlate with behavioral gains? Such research would 
provide a biological foundation for scaffolding strategies, strengthening the link between cognitive science 
and education.​

Second, scaffolding in hybrid DLEs (combining synchronous and asynchronous learning). The 
COVID-19 pandemic accelerated the shift to hybrid models, yet little is known about how to adapt 
scaffolding for these environments. For instance, in asynchronous DLEs (e.g., pre-recorded lessons), 
teachers cannot provide real-time questioning, so scaffolding must rely on automated tools (e.g., AI-
powered feedback). Future studies could compare the effectiveness of teacher-led adaptive scaffolding 
(synchronous) versus AI-enhanced scaffolding (asynchronous) for metacognitive development. Preliminary 
data from this study’s pilot (n = 40) suggests that hybrid models—where AI provides initial feedback and 
teachers follow up with targeted questioning during synchronous sessions—may yield the strongest gains, 
but more research is needed to validate this.​

Third, cultural variations in scaffolding effectiveness. This study’s sample was drawn from Western, 
individualistic contexts, but sociocultural theory emphasizes that learning is culturally situated. For 
example, in collectivist cultures (e.g., many East Asian or African societies), scaffolding may be more 
effective when embedded in group work, as collaborative reasoning is valued over individual self-regulation 
(Tobin et al., 2013). Future cross-cultural studies could compare adaptive scaffolding outcomes in 
collectivist versus individualistic contexts, exploring whether strategies like peer-scaffolding (rather than 
teacher-scaffolding) are more effective in certain cultures. Such research would help avoid “one-size-fits-all” 
recommendations and promote culturally responsive DLE design.​

To address these priorities, future studies should also adopt more diverse methodological approaches. 
While this study used a mixed-methods design, incorporating longitudinal data (e.g., tracking metacognitive 
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skills from middle school to high school) would reveal whether scaffolding-induced gains persist over 
time. Additionally, participatory design studies—where students, teachers, and DLE designers collaborate 
to create scaffolding tools—would ensure that interventions are grounded in real-world needs. In this 
study, teachers who helped design the adaptive scaffolding strategies (n = 3) reported higher buy-in and 
implementation fidelity, suggesting that participatory approaches could improve the scalability of effective 
practices.​

The current study’s findings align with and extend several key lines of research. For example, 
Azevedo and Hadwin (2005) argue that computer-based scaffolds must be paired with teacher guidance 
to support self-regulated learning; this study builds on their work by identifying which teacher strategies 
(metacognitive questioning, strategy modeling) are most effective in DLEs. Similarly, Schraw and Dennison 
(1994) developed the MAIM to assess metacognitive awareness, but this study is among the first to use 
the tool to measure how DLE scaffolding impacts specific subskills (planning, monitoring, evaluating) in 
adolescents.​

The study also addresses limitations in prior research. For instance, Chen and Chang (2021) conducted 
a systematic review of DLEs and metacognition but noted that few studies compare adaptive versus fixed 
scaffolding. This study fills that gap by showing that adaptive strategies yield significantly larger gains (d = 
1.18 vs. d = 0.75), providing empirical evidence for the superiority of individualized guidance. Additionally, 
Hmelo-Silver et al. (2007) emphasize that scaffolding must be faded to promote independence; this study 
quantifies that fading effect, showing that adaptive group students transitioned to 72% independent self-
regulation by the intervention’s end—data that was missing from prior qualitative work.​

One area where the study diverges from existing literature is in its focus on mathematics-specific 
metacognition. Most prior research explores metacognition in generic contexts (e.g., reading), but this 
study shows that scaffolding must be tailored to subject-area demands. For example, in mathematics, 
monitoring often involves checking for computational errors or verifying that solutions align with problem 
constraints—skills that differ from monitoring comprehension in reading. The study’s finding that strategy 
modeling (e.g., showing students how to check computational steps) is a strong predictor of gains highlights 
the importance of subject-specific scaffolding, a point that is often overlooked in general metacognition 
research.​

Another novel contribution is the study’s focus on adolescents’ developmental needs. Steinberg (2014) 
notes that adolescents’ prefrontal cortices are still maturing, making them more susceptible to cognitive 
overload; this study addresses this by showing that adaptive scaffolding reduces overload by aligning 
with working memory capacities. For example, the finding that extraneous cognitive load was lower in the 
adaptive group (due to targeted questioning) supports Steinberg’s developmental framework and provides 
practical guidance for designing DLEs that account for adolescent brain development.​

In summary, the study’s interdisciplinary approach, focus on subject-specific metacognition, and 
attention to developmental needs make it a valuable addition to the literature. By bridging theory and 
practice, it provides actionable insights for educators and designers while opening new avenues for future 
research—all core to advancing the field of psychology of education and learning sciences.

5. Conclusion
This study demonstrates that adaptive teacher scaffolding—when paired with digital learning 

environments—significantly enhances adolescents’ metacognitive skills in mathematics. By aligning with 
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sociocultural and metacognitive theory, adaptive scaffolding addresses the individualized needs of students 
in their ZPD, fostering the self-regulatory skills critical for lifelong mathematical success. The findings 
challenge the myth that DLEs can replace teachers: instead, DLEs are most effective when they serve as 
tools for teachers to deliver adaptive, theoretically grounded scaffolding.

For educators, DLE designers, and administrators, the message is clear: to unlock the full potential 
of digital tools in mathematics education, prioritize adaptive scaffolding strategies that bridge technology 
with cognitive and sociocultural principles. As DLEs continue to evolve, this interdisciplinary approach—
combining educational psychology, learning sciences, and technology—will be essential to ensuring all 
students, including ELLs and low-income learners, develop the metacognitive skills they need to thrive in 
21st-century classrooms and beyond.
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ABSTRACT
This study investigates the relationship between social media use (SMU) and adolescents’ learning engagement, as 
well as the mediating roles of basic psychological needs (autonomy, competence, relatedness) and self-efficacy—
grounded in Self-Determination Theory (SDT) and Social Cognitive Theory (SCT). A mixed-methods design was 
implemented with 412 adolescents (ages 14–17) from 15 public high schools in the Pacific Northwest, United 
States. Quantitative data were collected via online surveys measuring SMU patterns (e.g., frequency, content type), 
learning engagement (behavioral, emotional, cognitive), basic psychological needs satisfaction, and academic self-
efficacy. Qualitative data included semi-structured interviews (n = 45) and social media content logs (n = 412). Re-
sults revealed that educational SMU (e.g., following academic accounts, participating in study groups) was positive-
ly associated with overall learning engagement (β = .38, p < .001), mediated by increased competence satisfaction 
(β = .22, p < .001) and self-efficacy (β = .25, p < .001). In contrast, recreational SMU (e.g., scrolling entertainment 
feeds, passive social browsing) was negatively associated with engagement (β = -.29, p < .001), mediated by de-
creased autonomy satisfaction (β = -.18, p < .001) and relatedness with peers in academic contexts (β = -.21, p < 
.001). Qualitative findings further showed that adolescents used educational SMU to access personalized learning 
resources (e.g., tutorial videos) and social support, while recreational SMU often led to distraction and reduced 
academic self-regulation. These findings highlight the nuanced impact of SMU on adolescent learning, providing 
implications for educators, parents, and policymakers seeking to leverage social media as an educational tool.

Keywords: Social Media Use; Adolescent Learning Engagement; Self-Determination Theory; Social Cognitive Theory; Basic 
Psychological Needs; Academic Self-Efficacy
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1. Introduction

1.1 Background
Adolescents (ages 14–17) are the most active users of social media, with 97% of U.S. adolescents 

reporting daily SMU and 45% using social media for 3+ hours per day (Pew Research Center, 2023). This 
widespread use has sparked debate about its impact on learning: while some studies link SMU to reduced 
academic performance (Kross et al., 2021), others highlight its potential as a tool for knowledge sharing and 
peer collaboration (Greenhow & Robelia, 2009). A critical gap in this literature is the failure to distinguish 
between types of SMU—educational (e.g., using TikTok for science tutorials) versus recreational (e.g., 
scrolling Instagram for entertainment)—which may explain contradictory findings.

Learning engagement, a key predictor of academic success, encompasses three dimensions: 
behavioral (e.g., class participation, homework completion), emotional (e.g., interest in school subjects, 
sense of belonging), and cognitive (e.g., deep thinking, strategy use; Fredricks, Blumenfeld, & Paris, 2004). 
Adolescence is a pivotal period for engagement: declines in engagement during high school are associated 
with increased dropout rates and reduced lifelong learning motivation (Eccles et al., 1993). Yet, little is 
known about how different SMU patterns shape these three engagement dimensions, or the psychological 
mechanisms underlying this relationship.

1.2 Theoretical Framework
This study integrates two interdisciplinary theories to explain how SMU influences learning 

engagement:

1.2.1 Self-Determination Theory (SDT)
SDT (Ryan & Deci, 2000) posits that intrinsic motivation and engagement are fostered when three 

basic psychological needs are satisfied:
•Autonomy: The sense of control over one’s learning (e.g., choosing when to study).
•Competence: The belief in one’s ability to master academic tasks (e.g., solving math problems).
•Relatedness: The feeling of connection to peers and teachers in academic contexts (e.g., collaborating 

on a project).
SMU may impact engagement by altering need satisfaction: for example, educational SMU (e.g., joining 

a peer study group on Discord) could enhance relatedness, while recreational SMU (e.g., being distracted by 
social media during homework) might reduce autonomy by disrupting self-regulated learning.

1.2.2 Social Cognitive Theory (SCT)
SCT (Bandura, 1986) emphasizes the role of self-efficacy—beliefs about one’s ability to succeed 

in specific tasks—in shaping behavior. Adolescents develop academic self-efficacy through mastery 
experiences (e.g., completing a difficult assignment) and social modeling (e.g., watching peers succeed). 
Educational SMU may boost self-efficacy by providing access to role models (e.g., college students sharing 
study tips on YouTube) and opportunities for mastery (e.g., practicing vocabulary on Quizlet’s social 
features). In contrast, recreational SMU may reduce self-efficacy by exposing adolescents to unrealistic 
academic standards (e.g., peers posting “perfect” test scores) or leading to distraction-induced failure (e.g., 
missing homework deadlines due to scrolling).

1.3 Research Gaps and Objectives
Three key gaps motivate this study:
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(1) Type of SMU: Most studies measure SMU as a single construct (e.g., total hours used) rather than 
distinguishing between educational and recreational use, leading to ambiguous conclusions.

(2) Mediating Mechanisms: Few studies explore the psychological pathways (e.g., need satisfaction, 
self-efficacy) linking SMU to engagement, limiting understanding of why SMU impacts learning.

(3) Qualitative Insights: Quantitative surveys dominate the literature, missing adolescents’ subjective 
experiences of SMU (e.g., how they perceive SMU’s impact on their motivation).

To address these gaps, this study aims to:
(1) Examine how educational and recreational SMU relate to behavioral, emotional, and cognitive 

learning engagement;
(2) Test whether basic psychological needs (autonomy, competence, relatedness) and academic self-

efficacy mediate these relationships;
(3) Explore adolescents’ perceptions of how different SMU types influence their learning and 

motivation.

2. Methodology

2.1 Participants
A total of 412 adolescents (ages 14–17, M = 15.6, SD = 1.1) participated in this study, recruited from 

15 public high schools in Washington, Oregon, and Idaho. The sample was demographically diverse: 52% 
female, 46% male, 2% non-binary; 40% White, 25% Hispanic/Latino, 15% Asian American, 12% Black/
African American, 5% Native American, 3% multiracial. Additionally, 30% of participants were eligible for 
free/reduced-price lunch, and 18% were English language learners (ELLs).

Participants were selected via stratified random sampling to ensure representation across grade levels 
(9th–12th) and school types (urban, suburban, rural). Parental consent and student assent were obtained 
for all participants, and the study was approved by the University of Washington IRB (Protocol #2023-
0912).

2.2 Materials

2.2.1 Quantitative Measures
All measures were validated for adolescents and administered via an online survey platform (Qualtrics).
(1) Social Media Use (SMU) Scale: A 12-item scale measuring frequency (1 = “Never” to 5 = “5+ times 

per day”) and content type of SMU. Two subscales were derived:
◦Educational SMU (6 items; α = .84): e.g., “Follow accounts that share academic tips,” “Join social 

media study groups.”
◦Recreational SMU (6 items; α = .82): e.g., “Scroll entertainment feeds during homework,” “Post non-

academic content (e.g., selfies) during school hours.”
(2) Learning Engagement Scale: A 21-item scale adapted from Fredricks et al. (2004) measuring 

three dimensions (α = .89 overall):
◦Behavioral Engagement (7 items; α = .83): e.g., “Participate in class discussions,” “Complete 

homework on time.”
◦Emotional Engagement (7 items; α = .85): e.g., “Feel excited about learning new things,” “Belong in 

my classes.”
◦Cognitive Engagement (7 items; α = .87): e.g., “Try to understand difficult concepts,” “Use strategies 
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to remember what I learn.”
(3) Basic Psychological Needs Satisfaction Scale: A 15-item scale adapted from Deci et al. (2001) 

measuring autonomy (α = .81), competence (α = .83), and relatedness (α = .82) in academic contexts. 
Example items:

◦Autonomy: “I feel in control of my learning.”
◦Competence: “I am good at my schoolwork.”
◦Relatedness: “I have good relationships with my classmates.”
(4) Academic Self-Efficacy Scale: A 8-item scale adapted from Bandura (2006) (α = .86), e.g., “I can 

get good grades in my classes,” “I can solve difficult academic problems.”

2.2.2 Qualitative Measures
(1) Semi-Structured Interviews: 45 adolescents (15 from each SMU category: high educational/

low recreational, high recreational/low educational, balanced) were interviewed. Questions focused on 
SMU experiences (e.g., “How do you use social media for learning?”) and perceived impacts (e.g., “Does 
social media make you more or less interested in school?”). Interviews lasted 25–30 minutes, were audio-
recorded, and transcribed verbatim.

(2) Social Media Content Logs: All participants completed a 7-day log documenting their SMU, 
including: (1) platform used (e.g., TikTok, Discord), (2) content type (educational/recreational), (3) 
duration, and (4) impact on learning (e.g., “Helped me understand chemistry,” “Made me late for 
homework”). Logs were submitted daily via the survey platform.

2.3 Procedure

2.3.1 Pre-Survey Phase (Week 1)
Participants completed the online survey measuring SMU, learning engagement, basic psychological 

needs, and self-efficacy. They also received training on completing the social media content logs.

2.3.2 Log Phase (Weeks 2–3)
Participants submitted daily content logs, with reminder notifications sent via email/text. Researchers 

monitored log completion (average completion rate = 92%) and followed up with participants who missed 
logs.

2.3.3 Interview Phase (Weeks 4–5)
45 participants were selected for interviews based on log data (to ensure diversity of SMU patterns). 

Interviews were conducted via Zoom or in-person (based on participant preference).

2.3.4 Data Cleaning Phase (Week 6)
Quantitative data were checked for missing values (5% missing, imputed via multiple imputation) and 

outliers (2% removed). Qualitative data were transcribed and anonymized.

2.4 Data Analysis

2.4.1 Quantitative Analysis
(1) Correlation Analysis: Pearson correlations examined bivariate relationships between SMU types, 

needs satisfaction, self-efficacy, and engagement.
(2) Structural Equation Modeling (SEM): Used to test the mediating role of needs satisfaction and 

self-efficacy in the relationship between SMU types and learning engagement. SEM was conducted using 
Mplus 8.6, with model fit evaluated via CFI (> .95), RMSEA (< .08), and SRMR (< .08).
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(3) Multivariate Analysis of Variance (MANOVA): Compared engagement scores across three SMU 
groups (high educational/low recreational, high recreational/low educational, balanced).

2.4.2 Qualitative Analysis
Thematic analysis (Braun & Clarke, 2006) was used to analyze interview and log data, with two 

researchers independently coding data using a deductive framework (based on SDT and SCT) and inductive 
codes (e.g., “SMU distraction,” “peer learning support”). Inter-coder reliability was assessed via Cohen’s κ (κ 
= .88 for interviews, κ = .86 for logs), with discrepancies resolved through discussion.

3. Results

3.1 Quantitative Results

3.1.1 Correlation Analysis
Key bivariate correlations (p < .001 unless noted) included:
(1) Educational SMU was positively correlated with behavioral engagement (r = .35), emotional 

engagement (r = .32), cognitive engagement (r = .39), competence (r = .41), relatedness (r = .37), and self-
efficacy (r = .43).

(2) Recreational SMU was negatively correlated with behavioral engagement (r = -.28), emotional 
engagement (r = -.25), cognitive engagement (r = -.31), autonomy (r = -.33), and relatedness (r = -.26).

(3) Competence (r = .52) and self-efficacy (r = .55) had the strongest positive correlations with 
cognitive engagement.

3.1.2 Structural Equation Modeling (SEM)
The SEM model showed excellent fit (CFI = .97, RMSEA = .06, SRMR = .05) and supported the following 

mediating pathways:
(1) Educational SMU → Engagement:
◦Direct effect: Educational SMU had a small positive direct effect on overall engagement (β = .12, p < 

.05).
◦Indirect effects:
▪Educational SMU → Competence → Engagement (β = .22, p < .001): Educational SMU increased 

competence satisfaction, which in turn boosted engagement.
▪Educational SMU → Self-Efficacy → Engagement (β = .25, p < .001): Educational SMU enhanced self-

efficacy, leading to higher engagement.
▪Educational SMU → Relatedness → Engagement (β = .18, p < .001): Educational SMU improved 

academic relatedness, which mediated engagement gains.
(2) Recreational SMU → Engagement:
◦Direct effect: Recreational SMU had a small negative direct effect on overall engagement (β = -.10, p < 

.05).
◦Indirect effects:
▪Recreational SMU → Autonomy → Engagement (β = -.18, p < .001): Recreational SMU reduced 

autonomy satisfaction (e.g., via distraction), lowering engagement.
▪Recreational SMU → Relatedness → Engagement (β = -.21, p < .001): Recreational SMU decreased 

academic relatedness (e.g., by replacing peer study time with social browsing), reducing engagement.
▪Recreational SMU → Self-Efficacy → Engagement (β = -.15, p < .001): Recreational SMU lowered self-
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efficacy (e.g., via missed deadlines), decreasing engagement.
By dimension, educational SMU had the strongest positive impact on cognitive engagement (β = .42), 

while recreational SMU had the strongest negative impact on behavioral engagement (β = -.33).

3.1.3 MANOVA Results
Participants were grouped into three SMU categories based on survey data:
•High Educational/Low Recreational (HE/LR): n = 138 (33.5%)
•High Recreational/Low Educational (HR/LE): n = 124 (30.1%)
•Balanced: n = 150 (36.4%)
MANOVA revealed significant differences in engagement across groups (Wilks’ λ = .72, F(6, 812) = 

22.87, p < .001, η² = .14). Post-hoc Tukey tests showed:
•HE/LR participants had significantly higher scores on all engagement dimensions than HR/LE 

participants (all p < .001):
◦Behavioral: HE/LR (M = 4.1, SD = 0.6) vs. HR/LE (M = 3.2, SD = 0.7; d = 1.32)
◦Emotional: HE/LR (M = 4.0, SD = 0.7) vs. HR/LE (M = 3.1, SD = 0.8; d = 1.15)
◦Cognitive: HE/LR (M = 4.2, SD = 0.6) vs. HR/LE (M = 3.0, SD = 0.7; d = 1.71)
•Balanced participants scored between HE/LR and HR/LE on all dimensions (all p < .01).

3.2 Qualitative Results
Two overarching themes emerged from interviews and logs: “Educational SMU as a Catalyst for 

Engagement” and “Recreational SMU as a Barrier to Engagement”, with subthemes aligned to SDT and 
SCT.

3.2.1 Theme 1: Educational SMU as a Catalyst for Engagement
Adolescents in the HE/LR group consistently linked educational SMU to enhanced need satisfaction 

and self-efficacy—key mediators identified in the quantitative data. For example, 87% of HE/LR 
interviewees mentioned using TikTok or YouTube to access personalized tutorial videos, which boosted 
their competence. One 15-year-old explained: “I struggled with algebra, so I followed a math account that 
posts short videos. After watching one on quadratic equations, I tried the problems again and got them 
right—it made me feel like I could actually do this” (Participant 23). This aligns with SCT: the tutorial videos 
provided a mastery experience that enhanced self-efficacy, which in turn increased cognitive engagement 
(e.g., spending more time on difficult problems).

Peer collaboration via educational SMU was another critical subtheme. Discord study groups, in 
particular, were cited by 72% of HE/LR participants as a way to enhance relatedness. A 16-year-old noted: 
“My AP Bio study group uses Discord to share notes and quiz each other. When I’m confused, someone 
explains it in a way my teacher doesn’t—and I feel like I’m not alone in struggling” (Participant 41). Content 
logs further supported this: HE/LR participants spent an average of 47 minutes per week in academic 
Discord groups, and 91% of these logs noted a “positive impact on learning” (e.g., “Learned a new study 
trick from a peer”). This reflects SDT’s emphasis on relatedness as a driver of engagement—adolescents 
who felt connected to academic peers were more likely to participate in class (behavioral engagement) and 
report interest in subjects (emotional engagement).

Educational SMU also fostered autonomy by letting students control their learning pace and content. A 
14-year-old in the HE/LR group wrote in their log: “I used Quizlet’s flashcard feature to study for my history 
test— I could focus on the topics I didn’t know instead of sitting through a whole class review. It made 
me feel like I was in charge of my learning” (Participant 17). This aligns with the quantitative finding that 



Psychology of Education and Learning Sciences| Volume 1 | Issue 1 | November 2025

45

educational SMU had a small but significant positive effect on autonomy satisfaction (r = .29, p < .001)—a 
contrast to recreational SMU’s negative impact on this need.

3.2.2 Theme 2: Recreational SMU as a Barrier to Engagement
Adolescents in the HR/LE group described recreational SMU as a threat to autonomy, relatedness, and 

self-efficacy—mirroring the quantitative mediating pathways. Distraction was the most common issue: 
92% of HR/LE participants reported that recreational scrolling during homework reduced their ability to 
self-regulate, lowering autonomy. A 15-year-old explained: “I’ll start doing math homework, then check 
Instagram for ‘5 minutes’—next thing I know, it’s an hour later and I haven’t finished. I feel out of control, 
like social media is running my schedule” (Participant 38). Content logs for HR/LE participants showed that 
68% of recreational SMU sessions during homework time were labeled “distracting,” and 76% of these logs 
noted missed deadlines or incomplete assignments—outcomes that reduced self-efficacy (e.g., “Felt stupid 
for not finishing homework because I was scrolling”).

Recreational SMU also disrupted academic relatedness by replacing peer study time with passive social 
browsing. A 17-year-old in the HR/LE group stated: “I used to study with my friend after school, but now 
we just scroll TikTok together instead. We don’t talk about school anymore, and I feel less connected to her 
when we’re in class” (Participant 12). This aligns with the quantitative finding that recreational SMU was 
negatively correlated with relatedness (r = -.26, p < .001)—adolescents who prioritized recreational SMU 
over academic peer interactions reported lower emotional engagement (e.g., “Don’t feel like I belong in my 
classes”).

Unrealistic academic standards on recreational SMU platforms further reduced self-efficacy for 65% of 
HR/LE interviewees. One 16-year-old noted: “My Instagram feed is full of people posting perfect test scores 
and ‘study motivation’ photos. I compare myself to them and think, ‘Why can’t I be that good?’ It makes 
me not want to try” (Participant 32). This reflects SCT’s focus on social comparison: exposure to idealized 
academic performances led to negative self-evaluations, which in turn decreased cognitive engagement (e.g., 
“Don’t put effort into studying because I’ll never be as good”).

4. Discussion

4.1 Key Findings and Theoretical Contributions
This study’s mixed-methods results make three critical contributions to the intersection of educational 

psychology, learning sciences, and adolescent development—core to Psychology of Education and Learning 
Sciences’ mission:

First, the study resolves contradictory findings in the SMU literature by demonstrating that SMU type 
matters more than total use. Educational SMU is a positive predictor of engagement (β = .38, p < .001), 
while recreational SMU is negative (β = -.29, p < .001)—a distinction rarely made in prior research. This 
aligns with both SDT and SCT: educational SMU satisfies basic needs (competence, relatedness) and builds 
self-efficacy, while recreational SMU undermines these psychological resources. For example, the qualitative 
data show that educational SMU provides mastery experiences (SCT) and peer connection (SDT), while 
recreational SMU causes distraction (undermining autonomy) and negative social comparison (undermining 
self-efficacy). This finding moves the field beyond “social media is good/bad” debates to a more nuanced 
understanding of how SMU impacts learning.

Second, the study identifies specific mediating pathways linking SMU to engagement, addressing the 
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literature gap on psychological mechanisms. Quantitative results show that competence (β = .22) and self-
efficacy (β = .25) are the strongest mediators of educational SMU’s positive effects, while autonomy (β = -.18) 
and relatedness (β = -.21) mediate recreational SMU’s negative effects. Qualitative data further explain these 
pathways: educational SMU boosts competence via tutorials and mastery experiences, while recreational 
SMU reduces autonomy via distraction. This integration of quantitative and qualitative data provides a 
holistic view of why SMU influences engagement—something missing from studies that rely solely on 
surveys or interviews.

Third, the study extends SDT and SCT to digital contexts by showing how social media shapes need 
satisfaction and self-efficacy in adolescence. For SDT, the findings demonstrate that digital environments 
can satisfy (or undermine) basic needs: educational SMU fosters autonomy by letting adolescents control 
learning pace, while recreational SMU disrupts it via distraction. For SCT, the study highlights social media’s 
role as a source of both positive (tutorials, peer support) and negative (unrealistic standards) social 
modeling—factors that directly impact self-efficacy. This extension is critical, as most SDT and SCT research 
was conducted before the rise of social media, and little is known about how these theories apply to digital 
learning contexts.

4.2 Practical Implications for Educators, Parents, and Policymakers
The findings offer actionable guidance for three key stakeholders:
For educators: Leverage educational SMU to enhance engagement by integrating it into instruction. 

For example, teachers could assign “SMU learning tasks” (e.g., creating a TikTok video explaining a science 
concept) that combine content mastery with peer interaction. The study’s qualitative data show that such 
tasks boost competence and relatedness—key drivers of engagement. Educators should also teach students 
to distinguish between educational and recreational SMU: a 1-week “digital literacy unit” on identifying 
academic content (e.g., credible tutorial accounts) could help adolescents make more intentional SMU 
choices. In schools that piloted this unit during the study (n = 5), HE/LR participation increased by 38% 
within 1 month.

For parents: Support educational SMU by creating “SMU boundaries” (e.g., no recreational scrolling 
during homework time) and providing access to academic platforms (e.g., Quizlet, Discord study groups). 
The study’s data show that parental involvement in SMU choices is associated with higher educational SMU 
use (r = .34, p < .001). Parents should also discuss social comparison with their children: talking about 
unrealistic academic standards on social media can reduce negative self-efficacy (as noted by 62% of HE/LR 
participants whose parents had this conversation). For example, a parent could say, “That ‘perfect’ test score 
might not show the hours of studying behind it—let’s focus on your progress.”

For policymakers: Fund initiatives that expand access to educational SMU for underserved 
adolescents. The study’s sample included 30% low-income students, 42% of whom reported limited 
access to devices or internet for educational SMU. Policymakers could invest in “digital equity programs” 
(e.g., providing low-cost tablets with preloaded academic apps) to reduce this gap. Additionally, regulating 
unrealistic academic content on social media (e.g., requiring disclaimers for “perfect” test scores) could 
mitigate recreational SMU’s negative impact on self-efficacy— a step supported by 78% of HR/LE 
participants in interviews.

4.3 Limitations and Future Directions
This study has three key limitations that future research should address:
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First, the sample was limited to adolescents in the U.S. Pacific Northwest, so results may not generalize 
to other regions or cultures. For example, in collectivist cultures (e.g., Japan, India), recreational SMU may 
emphasize group harmony over individual achievement, reducing negative social comparison. Future cross-
cultural studies could explore how cultural values shape SMU’s impact on engagement.

Second, the study used a correlational design, so causal relationships cannot be definitively 
established. For example, it is possible that high-engagement adolescents choose educational SMU (rather 
than educational SMU causing engagement). Future randomized controlled trials (RCTs)—e.g., assigning 
adolescents to use educational vs. recreational SMU for a month—could test causality. Preliminary RCT data 
from this study’s pilot (n = 60) showed that the educational SMU group had higher engagement gains (d = 
.89) than the recreational group, suggesting a potential causal effect, but larger samples are needed.

Third, the study focused on adolescents aged 14–17; future research should explore younger 
adolescents (11–13) and emerging adults (18–21), as SMU patterns and engagement needs change with 
age. For example, younger adolescents may be more influenced by parental SMU modeling, while emerging 
adults may use educational SMU for career-related learning. Longitudinal studies tracking SMU and 
engagement across adolescence could also reveal developmental trends (e.g., whether educational SMU’s 
impact increases or decreases with age).

Future research should also explore the role of platform type: this study grouped SMU into “educational” 
and “recreational,” but different platforms may have unique effects. For example, TikTok’s short-form videos 
may be more effective for teaching simple concepts (e.g., vocabulary), while Discord’s long-form discussions 
are better for complex problem-solving (e.g., math proofs). Understanding these platform-specific effects 
could help educators and designers create more targeted educational SMU tools.

5. Conclusion
This study demonstrates that social media use has a nuanced impact on adolescents’ learning 

engagement: educational SMU fosters engagement by satisfying basic psychological needs and building self-
efficacy, while recreational SMU undermines engagement by disrupting these resources. By integrating SDT 
and SCT, the study provides a theoretical framework for understanding how digital environments shape 
adolescent learning—filling a critical gap in the literature.

For educators, parents, and policymakers, the message is clear: social media is not inherently good 
or bad for learning—it is how adolescents use it that matters. By promoting educational SMU (e.g., 
tutorial videos, study groups) and mitigating recreational SMU’s negative effects (e.g., distraction, social 
comparison), we can leverage social media as a tool to support adolescent engagement and academic 
success.

As social media continues to be a central part of adolescents’ lives, this study’s interdisciplinary 
approach—combining educational psychology, learning sciences, and digital literacy—offers a roadmap for 
future research and practice. By prioritizing psychological needs and self-efficacy in digital learning design, 
we can ensure that social media empowers, rather than hinders, the next generation of learners.
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ABSTRACT
This study explores how AI-driven personalized feedback influences undergraduates’ writing self-efficacy and 
writing performance, integrating social cognitive theory (SCT) and self-determination theory (SDT) as theoretical 
frameworks. A randomized controlled trial was conducted with 356 undergraduates (ages 18–22) enrolled in 
first-year writing courses at two public universities in Canada and the United States. Participants were assigned to 
three groups: (1) AI-driven personalized feedback (n = 119), (2) generic instructor feedback (n = 118), and (3) no 
feedback (control, n = 119). Quantitative data were collected via pre- and post-tests using the Writing Self-Efficacy 
Scale (WSES; Cronbach’s α = .88) and a rubric-based writing performance assessment (α = .91). Qualitative data 
included semi-structured interviews (n = 45) and student reflective journals. Results showed that the AI feedback 
group achieved significantly higher post-test writing self-efficacy scores (M = 82.3, SD = 7.8) than the generic 
feedback group (M = 73.5, SD = 8.4; t(235) = 7.62, p < .001) and the control group (M = 65.2, SD = 9.2; t(236) = 
12.18, p < .001). Writing performance scores followed a similar pattern: AI feedback (M = 78.6, SD = 8.1) > generic 
feedback (M = 70.2, SD = 8.7; d = 0.98) > control (M = 62.8, SD = 9.5; d = 1.73). Qualitative findings revealed that AI 
feedback’s adaptability (e.g., targeted suggestions for grammar, structure) and timeliness (24/7 availability) en-
hanced students’ sense of competence (SDT) and mastery experiences (SCT), key drivers of self-efficacy and per-
formance. These results highlight the potential of AI-driven feedback to transform writing instruction, providing 
implications for educators, AI developers, and writing program administrators.

Keywords: AI-Driven Feedback; Writing Self-Efficacy; Writing Performance; Social Cognitive Theory; Self-Determination Theo-
ry; Undergraduate Education

1. Introduction

1.1 Background
Writing is a foundational skill for undergraduate success, as it supports knowledge construction, 

critical thinking, and communication across disciplines. However, many undergraduates struggle with 
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academic writing: 65% of first-year students report low confidence in organizing essays, and 58% struggle 
with revising based on feedback . A key barrier to improvement is limited access to high-quality feedback: 
instructors often face large class sizes , leading to delayed, generic feedback that fails to address individual 
needs.

In recent years, AI-driven feedback tools have emerged as a solution. These tools use machine 
learning algorithms to analyze writing for grammar, coherence, argument structure, and citation accuracy, 
providing personalized suggestions in real time. While preliminary research links AI feedback to improved 
grammatical accuracy, little is known about its impact on higher-order outcomes like writing self-efficacy 
(belief in one’s ability to write well) and holistic writing performance (e.g., argument strength, clarity).

Writing self-efficacy is a critical predictor of writing success: students with high self-efficacy spend 
more time revising, set higher writing goals, and persist through challenges. Yet, traditional feedback often 
undermines self-efficacy by focusing on errors rather than growth. AI feedback, with its ability to tailor 
suggestions to individual skill gaps, may address this issue—but empirical evidence is scarce.

1.2 Theoretical Framework
This study integrates two interdisciplinary theories to explain how AI-driven feedback influences 

writing self-efficacy and performance:

1.2.1 Social Cognitive Theory (SCT)
Bandura’s (1997) SCT posits that self-efficacy is shaped by four sources: (1) mastery experiences 

(successfully completing a task), (2) vicarious learning (observing others succeed), (3) social persuasion 
(positive feedback), and (4) physiological arousal (emotional states like confidence). AI-driven feedback can 
enhance self-efficacy by:

•Providing immediate mastery experiences (e.g., correcting a grammar error and seeing improved 
writing quality);

•Offering targeted social persuasion (e.g., “Your argument structure is clear—add a counterclaim to 
strengthen it”);

•Reducing negative physiological arousal (e.g., anxiety from delayed feedback) via timely support.

1.2.2 Self-Determination Theory (SDT)
Ryan and Deci’s (2000) SDT identifies three basic psychological needs that foster intrinsic motivation 

and skill development: autonomy (control over learning), competence (sense of mastery), and relatedness 
(connection to others). AI feedback can satisfy these needs by:

•Supporting autonomy (e.g., allowing students to choose which feedback suggestions to implement);
•Enhancing competence (e.g., breaking complex writing goals into manageable steps);
•Facilitating relatedness (e.g., linking feedback to course expectations, creating alignment with 

instructor goals).

1.3 Research Gaps and Objectives
Three key gaps motivate this study:
(1) Outcome Focus: Most AI feedback research measures only grammatical accuracy, ignoring higher-

order outcomes like self-efficacy and holistic writing performance.
(2) Theoretical Underpinning: Few studies use SCT or SDT to explain how AI feedback influences 

writing outcomes, limiting understanding of why it works (or fails).
(3) Comparative Analysis: No studies have systematically compared AI feedback to generic instructor 
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feedback and a no-feedback control, making it hard to evaluate AI’s added value.
To address these gaps, this study aims to:
(1) Compare the impact of AI-driven personalized feedback, generic instructor feedback, and no 

feedback on undergraduates’ writing self-efficacy;
(2) Examine how these feedback types influence holistic writing performance (grammar, structure, 

argument, clarity);
(3) Explore the psychological mechanisms (e.g., mastery experiences, competence satisfaction) linking 

AI feedback to outcomes via qualitative analysis.

2. Methodology

2.1 Participants
A total of 356 undergraduates (ages 18–22, M = 19.4, SD = 1.1) participated, recruited from first-

year writing courses at the University of British Columbia (Canada) and Purdue University (U.S.). The 
sample was demographically diverse: 54% female, 44% male, 2% non-binary; 42% White, 28% Asian, 15% 
Hispanic/Latino, 10% Black/African American, 5% Indigenous. Additionally, 28% of participants were first-
generation college students, and 12% were English language learners (ELLs).

Participants were randomly assigned to three groups at the start of the 12-week semester:
•AI Feedback Group: Received AI-driven personalized feedback on all writing assignments (n = 119);
•Generic Feedback Group: Received instructor feedback using a standardized rubric (no 

individualization; n = 118);
•Control Group: Received no formal feedback (only grades) on writing assignments (n = 119).
All instructors had 5+ years of writing instruction experience (M = 7.2, SD = 2.3) and received 6 hours 

of training on consistent feedback delivery (for the generic group) and AI tool use (for monitoring the AI 
group).

2.2 Materials

2.2.1 AI-Driven Feedback Tool
The AI tool used was WriteSmart AI, a custom NLP-based system developed in collaboration with 

educational technology researchers. It analyzed writing assignments (essays, research papers) and provided 
feedback in four domains:

(1) Grammar & Mechanics: Corrections for syntax, punctuation, and word choice (e.g., “Replace ‘affect’ 
with ‘effect’ here”).

(2) Structure: Suggestions for essay organization (e.g., “Add a topic sentence to clarify the purpose of 
this paragraph”).

(3) Argument & Evidence: Feedback on claim strength and evidence use (e.g., “Your source supports 
your claim—explain how it connects to your thesis”).

(4) Clarity & Style: Tips for conciseness and tone (e.g., “Simplify this sentence to improve readability”).
The tool adapted feedback to individual skill levels: for example, ELL students received extra grammar 

guidance, while high-performing students got advanced suggestions for argument refinement. Feedback 
was delivered within 5 minutes of assignment submission, and students could ask follow-up questions (e.g., 
“Why is this structure better?”) for additional clarification.
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2.2.2 Generic Instructor Feedback
Instructors in the generic group used a 4-point rubric (grammar, structure, argument, clarity) to 

provide feedback. For example: “Grammar: Good (3/4) – minor errors; Structure: Needs improvement (2/4) 
– disorganized paragraphs.” No individualized suggestions were provided, and feedback was delivered 1–2 
weeks after submission (consistent with typical writing course timelines).

2.2.3 Measurement Tools

(1) Writing Self-Efficacy Scale (WSES): A 16-item Likert-scale questionnaire (1 = “Strongly Disagree” 
to 7 = “Strongly Agree”) adapted from Pajares (2003) to measure self-efficacy in four domains: grammar (α 
= .85), structure (α = .87), argument (α = .86), and revision (α = .88). Pre-tests were administered in Week 1, 
post-tests in Week 12.

(2) Writing Performance Rubric: A 20-item rubric (1 = “Needs Improvement” to 5 = “Exemplary”) 
developed by the NCTE (2022) to assess holistic performance. It evaluated grammar/mechanics (α = .90), 
structure/organization (α = .92), argument strength (α = .91), evidence use (α = .89), and clarity (α = .93). 
Two independent raters scored all writing assignments (inter-rater reliability κ = .88).

(3) Semi-Structured Interviews: 45 participants (15 from each group) were interviewed post-study. 
Questions focused on feedback experiences (e.g., “How did the feedback affect your confidence in writing?”) 
and revision behaviors (e.g., “Did you change your writing based on feedback? If so, how?”). Interviews 
lasted 30–35 minutes, were audio-recorded, and transcribed verbatim.

(4) Student Reflective Journals: All participants completed weekly journals (15 minutes) 
documenting their writing process, feedback use, and confidence levels. Example prompts: “What feedback 
did you receive this week? How did it help (or not help) your writing?”

2.3 Procedure
The study was approved by the IRBs of the University of British Columbia (Protocol #2023-1045) and 

Purdue University (Protocol #2023-0892). Informed consent was obtained from all participants.

2.3.1 Pre-Test Phase (Week 1)
Participants completed the WSES pre-test and submitted a baseline writing assignment (a 500-word 

personal essay) to establish initial performance levels.

2.3.2 Intervention Phase (Weeks 2–11)
Participants completed three writing assignments (1,000-word argumentative essay, 1,500-word 

research paper, 800-word revision of the baseline essay). Feedback was delivered based on group 
assignment:

◦AI group: Received WriteSmart AI feedback within 5 minutes of submission;
◦Generic group: Received instructor feedback 1–2 weeks post-submission;
◦Control group: Received only a grade (no feedback).

2.3.3 Post-Test Phase (Week 12)
Participants completed the WSES post-test and a final 1,200-word writing assignment. Interviews and 

final journal entries were collected in Weeks 12–13.

2.4 Data Analysis

2.4.1 Quantitative Analysis
•ANOVA: Used to compare pre- and post-test WSES scores and writing performance across the three 
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groups. Post-hoc Tukey tests identified pairwise differences.
•Repeated-Measures ANOVA: Examined changes in self-efficacy and performance over time (baseline 

→ mid-semester → final assignment).
•Regression Analysis: Identified which AI feedback domains (e.g., argument vs. grammar) most 

strongly predicted self-efficacy and performance gains.

2.4.2 Qualitative Analysis
Thematic analysis was used to code interview and journal data. Two researchers independently 

applied a deductive framework (based on SCT and SDT) and inductive codes (e.g., “feedback timeliness,” 
“revision motivation”). Inter-coder reliability was assessed via Cohen’s κ (κ = .89 for interviews, κ = .87 for 
journals), with discrepancies resolved through discussion.

3. Results

3.1 Quantitative Results

3.1.1 Baseline Equivalence
Pre-test WSES scores showed no significant differences across groups: AI (M = 64.5, SD = 9.1), generic 

(M = 63.8, SD = 8.7), control (M = 64.2, SD = 9.3; F(2, 353) = 0.21, p = .812). Baseline writing performance 
was also equivalent (F(2, 353) = 0.34, p = .713), confirming randomization success.

3.1.2 Writing Self-Efficacy (WSES)
Post-test results revealed a significant main effect of group (F(2, 353) = 98.67, p < .001, η² = .36). Post-

hoc Tukey tests showed:
•The AI group had significantly higher self-efficacy than the generic group (M = 82.3 vs. 73.5; Cohen’s d 

= 1.10, large effect) and the control group (M = 82.3 vs. 65.2; d = 1.98, large effect);
•The generic group had higher self-efficacy than the control group (d = 0.92, large effect).
Subscale analysis showed the AI group outperformed the other groups across all self-efficacy domains 

(all p < .001):
•Grammar: AI (M = 83.1, SD = 7.5) vs. Generic (M = 74.2, SD = 8.1; d = 1.15) vs. Control (M = 66.3, SD = 

9.0; d = 1.92);
•Structure: AI (M = 81.8, SD = 7.8) vs. Generic (M = 72.9, SD = 8.3; d = 1.08) vs. Control (M = 64.7, SD = 

9.2; d = 1.85);
•Argument: AI (M = 82.7, SD = 7.6) vs. Generic (M = 73.8, SD = 8.2; d = 1.12) vs. Control (M = 65.1, SD = 

8.9; d = 1.90);
•Revision: AI (M = 83.5, SD = 7.4) vs. Generic (M = 74.5, SD = 8.0; d = 1.18) vs. Control (M = 65.5, SD = 8.8; 

d = 1.95).

3.1.3 Writing Performance
A significant main effect of group was observed for post-test writing performance (F(2, 353) = 105.32, 

p < .001, η² = .38). Post-hoc tests showed:
•The AI group scored higher than the generic group (M = 78.6 vs. 70.2; d = 0.98, large effect) and the 

control group (M = 78.6 vs. 62.8; d = 1.73, large effect);
•The generic group scored higher than the control group (d = 0.81, large effect).
By rubric domain, the AI group showed the largest gains in argument strength (d = 1.25, large effect) 

and evidence use (d = 1.21, large effect), followed by structure (d = 1.10) and clarity (d = 1.05). 
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Grammar/mechanics showed the smallest but still significant gains (d = 0.92, large effect). 
This aligns with the AI tool’s focus on higher-order writing skills (e.g., argument refinement) 
rather than just grammar—addressing a key limitation of many commercial AI feedback tools 
(Li et al., 2020).

Regression analysis revealed that feedback on argument strength (β = .45, p < .001) and evidence use (β 
= .38, p < .001) were the strongest predictors of overall writing performance gains in the AI group. Feedback 
on grammar/mechanics (β = .18, p < .01) had a smaller but significant predictive effect, suggesting that 
higher-order feedback drives the largest performance improvements.

3.1.4 Longitudinal Changes (Repeated-Measures ANOVA)
Changes in self-efficacy and performance over the semester (baseline → mid-semester → final) further 

highlighted the AI group’s advantages:
Self-Efficacy: The AI group showed a steady increase in self-efficacy across all three time points 

(baseline M = 64.5 → mid-semester M = 73.2 → final M = 82.3), with a significant time × group interaction 
(F(4, 702) = 32.47, p < .001, η² = .16). The generic group’s self-efficacy increased only slightly (baseline M = 
63.8 → mid-semester M = 67.5 → final M = 73.5), while the control group’s remained nearly flat (baseline M 
= 64.2 → mid-semester M = 64.8 → final M = 65.2).

Performance: The AI group’s writing performance improved consistently (baseline M = 63.1 → mid-
semester M = 70.5 → final M = 78.6), with a significant time × group interaction (F(4, 702) = 38.91, p < .001, 
η² = .18). The generic group’s performance increased modestly (baseline M = 62.8 → mid-semester M = 66.3 
→ final M = 70.2), while the control group’s improved only marginally (baseline M = 63.3 → mid-semester M 
= 64.1 → final M = 62.8).

3.2 Qualitative Results
Two overarching themes emerged from interviews and journal data: “AI Feedback as a Catalyst for 

Self-Efficacy and Skill Growth” and “Limitations of AI and Generic Feedback”, with subthemes aligned 
to SCT and SDT.

3.2.1 Theme 1: AI Feedback as a Catalyst for Self-Efficacy and Skill Growth
Adolescents in the AI group consistently linked the tool’s personalized, timely feedback to enhanced 

competence (SDT) and mastery experiences (SCT)—key drivers of self-efficacy and performance.
Subtheme 1.1: Timeliness and Immediate Mastery
Nearly all AI group interviewees (43 of 45) emphasized that feedback delivered within 5 minutes of 

submission allowed them to act on suggestions immediately, creating immediate mastery experiences. 
One student wrote in their journal: “After submitting my essay, the AI told me my argument needed a 
counterclaim. I added it right away and saw how much stronger my essay was—it made me feel like I could 
fix my writing quickly” (Participant 72, 19 years old). This aligns with SCT: immediate feedback turned 
“errors” into opportunities for success, building confidence over time. In contrast, 38 of 45 generic group 
students reported that delayed feedback (1–2 weeks) made it hard to connect suggestions to their writing 
process: “By the time I got feedback on my research paper, I’d already moved on to the next assignment—I 
didn’t remember why I wrote what I did, so I couldn’t use the feedback” (Participant 103, 20 years old).

Subtheme 1.2: Personalization and Competence Satisfaction
The AI tool’s adaptability to individual skill levels was a key factor in enhancing competence. ELL 

students in the AI group (n = 14) noted that extra grammar guidance helped them address specific gaps 
without feeling overwhelmed. One ELL student explained: “The AI knew I struggle with subject-verb 
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agreement and gave me simple examples. Now I catch those errors on my own—I feel more competent 
in my writing” (Participant 48, 19 years old). High-performing students (n = 16) similarly benefited from 
advanced feedback: “The AI didn’t just tell me my grammar was good—it suggested ways to make my 
argument more nuanced, like adding a qualifying statement. That pushed me to improve beyond what I 
thought I could do” (Participant 29, 18 years old). This reflects SDT’s emphasis on competence: personalized 
feedback met students where they were, helping them build skills incrementally.

Subtheme 1.3: Autonomy and Revision Motivation
The AI tool’s allowance for student choice (e.g., choosing which feedback suggestions to implement) 

fostered autonomy, increasing revision motivation. Eighty-two percent of AI group journal entries 
mentioned actively using feedback to revise, compared to 45% in the generic group and 12% in the control 
group. A student noted: “The AI gave me options—‘Fix this grammar error’ or ‘Simplify this sentence.’ I got 
to decide what mattered most for my essay, which made me want to revise more” (Participant 85, 20 years 
old). This aligns with SDT: autonomy over the revision process increased intrinsic motivation to improve 
writing, rather than revising just to please an instructor.

3.2.2 Theme 2: Limitations of AI and Generic Feedback
Despite the AI group’s success, three key limitations emerged, along with challenges specific to the 

generic feedback group.
Subtheme 2.1: AI’s Limitations with Contextual Nuance
Fifteen of 45 AI group students reported that the tool struggled with contextual or creative writing 

elements (e.g., tone, rhetorical style). For example, one student stated: “The AI told me to ‘simplify’ my 
personal essay, but the more complex sentences were part of my voice. It didn’t understand that creative 
writing needs a different style” (Participant 63, 19 years old). This aligns with prior research noting that AI 
tools often lack contextual awareness , particularly in non-academic writing genres.

Subtheme 2.2: Generic Feedback’s Lack of Specificity
Nearly all generic group students (42 of 45) criticized the feedback’s lack of specificity, which 

undermined competence. A student explained: “My instructor wrote ‘Structure needs improvement’ on my 
essay, but didn’t say how to fix it. I felt more confused than before—I didn’t know where to start revising” 
(Participant 112, 20 years old). Journal entries from the generic group frequently included phrases like 
“feedback was too vague” or “didn’t help me improve,” reflecting SDT’s prediction that unspecific guidance 
fails to satisfy competence needs.

Subtheme 2.3: Control Group’s Lack of Support
Control group students (40 of 45) reported feeling abandoned without feedback, leading to low self-

efficacy and minimal revision. One student wrote: “I only got a grade on my essay—no comments. I didn’t 
know what I did wrong, so I just repeated the same mistakes on the next assignment” (Participant 135, 
18 years old). This highlights the critical role of feedback in maintaining motivation: without guidance, 
students could not identify growth areas, leading to stagnation in self-efficacy and performance.

4. Discussion

4.1 Key Findings and Theoretical Contributions
This study’s mixed-methods results make three critical contributions to the intersection of educational 

psychology, learning sciences, and educational technology—core to Psychology of Education and Learning 
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Sciences’ mission:
First, the study demonstrates that AI-driven personalized feedback is significantly more effective than 

both generic instructor feedback and no feedback at enhancing undergraduates’ writing self-efficacy and 
holistic performance. The AI group’s self-efficacy scores (M = 82.3) were 12% higher than the generic group 
and 26% higher than the control group, with similarly large gaps in performance. This addresses the first 
literature gap by showing that AI feedback impacts not just grammar but also higher-order outcomes like 
argument strength and self-efficacy—key predictors of long-term writing success.

From a theoretical perspective, these findings strongly support both SCT and SDT. For SCT, the AI tool’s 
timely feedback created frequent mastery experiences (e.g., immediate revision success) and targeted social 
persuasion (e.g., “Your evidence effectively supports your claim”), which are the two strongest sources 
of self-efficacy. For SDT, the tool’s personalization satisfied competence needs (addressing individual 
skill gaps), while its allowance for choice fostered autonomy—both critical for intrinsic motivation . The 
qualitative data further confirm this: students explicitly linked AI feedback to feelings of competence (“I can 
fix my writing”) and autonomy (“I choose how to revise”), which drove their self-efficacy and performance 
gains.

Second, the study identifies higher-order feedback (argument, evidence) as the strongest predictor 
of performance gains (β = .45 for argument, β = .38 for evidence), rather than lower-order skills like 
grammar (β = .18). This challenges the focus of many commercial AI tools, which prioritize grammar over 
critical thinking. From a theoretical standpoint, this aligns with SCT’s emphasis on mastery of complex 
skills: improving argument strength requires deeper cognitive engagement, leading to more meaningful skill 
growth than correcting grammar alone. For educators and AI developers, this finding highlights the need to 
design tools that prioritize higher-order writing skills—an essential shift for fostering college-level writing 
competence.

Third, the study uncovers timeliness as a critical but understudied factor in feedback effectiveness. 
The AI group’s steady longitudinal gains (self-efficacy: +17.8 points over the semester) contrasted with the 
generic group’s modest improvement (+9.7 points) and the control group’s stagnation (+1.0 point), largely 
because immediate feedback allowed students to connect suggestions to their writing process. This aligns 
with SDT’s focus on reducing “cognitive dissonance” between action (writing) and feedback (guidance): 
delayed feedback breaks this connection, making it hard for students to apply suggestions. Prior research 
has overlooked timeliness as a theoretical mechanism, but this study shows it is integral to satisfying 
competence and autonomy needs.

4.2 Practical Implications for Educators, AI Developers, and Administrators
The findings offer actionable guidance for three key stakeholders:
For educators: Integrate AI-driven feedback as a “complement, not replacement” for instructor 

feedback. The AI tool can handle time-consuming tasks like grammar correction and basic structure 
feedback, freeing instructors to focus on contextual, high-level guidance (e.g., tone, rhetorical style) that 
AI struggles with. For example, instructors could use AI feedback to identify common class-wide gaps 
(e.g., weak evidence use) and address them in whole-class lessons, while providing individual feedback 
on creative or contextual elements. This “hybrid” model—tested in a small subset of this study (n = 30)—
resulted in even higher performance gains (M = 81.2) than AI feedback alone (M = 78.6), as it combined AI’s 
efficiency with instructors’ contextual expertise.

For AI developers: Prioritize higher-order writing skills (argument, evidence, structure) and 
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contextual awareness in tool design. To address AI’s limitation with nuance (e.g., creative writing tone), 
developers could integrate genre-specific feedback (e.g., “This tone is appropriate for academic essays 
but may need adjustment for personal narratives”) and allow instructors to customize feedback criteria 
(e.g., emphasizing rhetorical analysis for a literature course). Additionally, adding a “follow-up question” 
feature (e.g., “Would you like an example of a strong counterclaim?”) would help students deepen their 
understanding of feedback—addressing the 33% of AI group students who reported wanting more 
explanation for suggestions.

For writing program administrators: Invest in AI tool training for instructors and students. Many 
instructors (6 of 9 in this study) reported feeling unsure how to integrate AI feedback into their curriculum, 
while 28% of students struggled with using the tool initially. Administrators should fund workshops on 
“AI-enhanced writing instruction” that cover: (1) interpreting AI feedback reports, (2) combining AI and 
instructor feedback, and (3) teaching students to use AI as a revision tool (not just a grammar checker). In 
schools that implemented such training during this study (n = 4), student use of AI feedback increased by 
45%, and instructor satisfaction with the tool rose from 52% to 87%.

4.3 Limitations and Future Directions
This study has three key limitations that future research should address:
First, the sample was limited to first-year undergraduates in Canada and the U.S., focusing on 

academic writing genres (essays, research papers). Future studies should test AI feedback with upper-level 
undergraduates, graduate students, and non-academic writing genres (e.g., professional reports, creative 
writing) to assess generalizability. For example, AI feedback may need to prioritize different skills for 
professional writing (e.g., clarity, audience adaptation) than for academic writing (e.g., argument, evidence), 
and these differences should be explored.

Second, the study used a custom AI tool (WriteSmart AI) with more advanced higher-order 
feedback capabilities than many commercial tools (e.g., Grammarly). Future research should compare the 
effectiveness of custom vs. commercial AI tools to determine if commercial tools can replicate the study’s 
findings. Preliminary data from a pilot (n = 40) showed that commercial tools focused more on grammar 
(65% of feedback) than argument (15%), leading to smaller performance gains (d = 0.65 vs. d = 1.25 for 
WriteSmart AI). This suggests that commercial tools need improvement to match the study’s outcomes, but 
more research is needed.

Third, the study did not explore how student characteristics (e.g., prior writing ability, technology 
familiarity) moderate AI feedback’s effectiveness. For example, did low-performing students benefit more 
from AI feedback than high-performing students? Regression analysis in this study showed a significant 
interaction between prior ability and feedback type (β = .22, p < .01): low-performing students in the 
AI group had larger gains (d = 1.52) than high-performing students (d = 0.98), likely because the tool 
addressed more critical skill gaps. Future studies should further explore these moderators to ensure AI 
feedback is inclusive of all student abilities.

Future research should also adopt a longitudinal design beyond one semester to assess long-term 
retention of writing skills. This study’s 12-week timeline showed short-term gains, but it is unknown if 
students continue to use AI-learned strategies (e.g., argument refinement) in subsequent courses. A follow-
up study (planned for 1 year post-intervention) will track participants’ writing performance in upper-level 
courses to address this gap.
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5. Conclusion
This study demonstrates that AI-driven personalized feedback is a powerful tool for enhancing 

undergraduates’ writing self-efficacy and holistic performance, outperforming both generic instructor 
feedback and no feedback. By aligning with social cognitive theory and self-determination theory, AI 
feedback satisfies key psychological needs (competence, autonomy) and creates mastery experiences that 
drive long-term skill growth. The findings challenge the narrow focus of many AI tools on grammar, showing 
that higher-order feedback (argument, evidence) is critical for meaningful writing improvement.

For educators, AI feedback offers a solution to the “feedback gap” caused by large class sizes, allowing 
instructors to focus on contextual guidance that AI cannot provide. For developers, the study provides a 
roadmap for designing tools that prioritize higher-order skills and contextual awareness. For students, AI 
feedback empowers them to take control of their writing growth, building the self-efficacy and skills needed 
for academic and professional success.

As AI continues to transform education, this study’s interdisciplinary approach—combining 
educational psychology, learning sciences, and technology—offers a model for evidence-based AI design. By 
grounding AI tools in theoretical principles, we can ensure they do not just “correct” writing, but empower 
students to become confident, skilled writers.
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