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ABSTRACT

Cloud-edge computing integrates the advantages of cloud computing’s powerful computing capacity and edge
computing’s low-latency response, which has become the core support for data-intensive applications such
as smart cities and industrial Internet of Things. However, the massive distributed data generated at the edge
contains a large amount of sensitive information, and the direct transmission of data to the cloud for centralized
processing faces severe privacy leakage risks. Meanwhile, the open access characteristics of edge nodes make
cloud-edge systems vulnerable to various malicious attacks, which seriously threatens the security and reliability
of the system. Federated Learning (FL) enables multiple participants to train models collaboratively without
sharing original data, which provides an effective technical means to solve the contradiction between data sharing
and privacy protection in cloud-edge computing. This study proposes a Federated Learning-Driven Hierarchical
Cloud-Edge Collaborative Privacy-Preserving and Security Defense Framework (FL-HCPS). The framework adopts
a two-level federated learning architecture (edge-level horizontal federation and cloud-edge vertical federation)
to realize collaborative training of security models while protecting data privacy. A privacy-enhanced federated
learning algorithm based on differential privacy and homomorphic encryption is designed to resist data inference
attacks and model inversion attacks. In addition, an attack-aware adaptive defense mechanism is integrated to
dynamically adjust defense strategies according to the type and intensity of attacks. Experimental evaluations
based on two real-world datasets (EdgelloTset and CSE-CIC-IDS2018) show that the FL-HCPS framework achieves
an average attack detection accuracy of 96.8% for common cloud-edge attacks (such as DDoS, data tampering, and
model poisoning), while the data privacy leakage risk is reduced by 78.3% compared with the traditional centrali-
zed framework. The communication overhead of the framework is only 23.5% of the horizontal federated learning
framework, and the model training time is shortened by 41.2%. The research results indicate that the FL-HCPS fra-
mework can effectively balance the requirements of privacy protection, security defense, and computing efficiency
in cloud-edge computing, providing a new technical solution for the secure and privacy-preserving operation of
cloud-edge integrated systems.

Keywords: Cloud-edge computing; Federated learning; Privacy protection; Security defense; Hierarchical collabo-
ration; Differential privacy

1. Introduction

With the rapid development of the Internet of Things (IoT) and 5G communication technology,
a large number of end devices (such as sensors, smart terminals, and industrial controllers) generate
massive amounts of data every moment (Ming et al., 2025). Cloud-edge computing, as a new computing
paradigm that combines cloud computing and edge computing, processes data at the edge close to the

data source to reduce transmission latency, and relies on the cloud to complete large-scale model training
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and global resource scheduling (Kowalska et al., 2024). This architecture has been widely applied in
smart cities, industrial Internet of Things (IIoT), and smart healthcare, bringing revolutionary changes to
various industries. For example, in industrial 1oT scenarios, edge nodes can realize real-time monitoring of
production equipment status, and the cloud can conduct global production optimization based on integrated
data from multiple edge nodes (Patel et al., 2024).

However, cloud-edge computing still faces severe challenges in privacy protection and security defense.
On the one hand, the data generated at the edge (such as user behavior data, industrial production data,
and medical health data) contains a large amount of sensitive information. The traditional centralized data
processing mode requires transmitting edge data to the cloud, which easily leads to privacy leakage during
data transmission and storage (Zhang et al., 2023). According to the 2025 Global Cloud-Edge Security
Report, 73% of cloud-edge security incidents are related to data privacy leakage, resulting in an average
economic loss of $2.8 million per incident. On the other hand, edge nodes are usually deployed in open
and complex environments, with limited computing and storage resources and relatively weak security
protection capabilities, making them vulnerable to malicious attacks such as DDoS attacks, data tampering
attacks, and model poisoning attacks (Li et al., 2023). These attacks not only affect the normal operation of
edge nodes but also may spread to the cloud through the cloud-edge communication channel, causing large-
scale system failures.

To solve the above problems, researchers have proposed various privacy protection and security
defense methods for cloud-edge computing. Privacy protection methods are mainly divided into two
categories: (1) Data encryption-based methods: These methods encrypt sensitive data before transmission
and storage, such as symmetric encryption, asymmetric encryption, and homomorphic encryption (Chen et
al,, 2023). However, homomorphic encryption has high computational overhead, which is difficult to apply
to resource-constrained edge nodes. (2) Anonymization-based methods: These methods anonymize data
by removing or replacing identifying information, but they are vulnerable to re-identification attacks (Wang
et al,, 2023). Security defense methods are mainly based on machine learning, which train attack detection
models using historical attack data to identify malicious behaviors (Zhao et al., 2024). However, traditional
machine learning methods require centralized collection of a large amount of training data, which conflicts
with privacy protection requirements. In addition, the heterogeneity of edge data and the dynamic nature of
attacks make it difficult for a single security model to adapt to complex cloud-edge environments.

Federated Learning (FL), proposed by Google in 2016, is a distributed machine learning technology
that enables multiple participants to collaboratively train a shared model without sharing original
data (McMahan et al., 2017). The core idea of FL is to keep the original data local, only transmit model
parameters to the central server for aggregation, which can effectively avoid privacy leakage caused by data
sharing. In recent years, FL has been gradually applied in cloud-edge computing to solve the contradiction
between data sharing and privacy protection (Yang et al., 2025). However, the application of FL in cloud-
edge security still faces many challenges: (1) The heterogeneity of edge devices (such as computing power,
storage capacity, and network conditions) leads to uneven model training quality and low aggregation
efficiency. (2) The transmission of model parameters may still face privacy risks, such as model inversion
attacks and gradient leakage attacks. (3) Existing federated learning-based security defense methods
usually adopt a single-level federation architecture, which cannot fully utilize the computing resources of
cloud and edge nodes, resulting in high communication overhead and long training time. (4) The lack of
effective attack awareness mechanisms makes it difficult to dynamically adjust defense strategies according
to attack types and intensity.
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To address the above challenges, this study proposes a Federated Learning-Driven Hierarchical
Cloud-Edge Collaborative Privacy-Preserving and Security Defense Framework (FL-HCPS). The framework
integrates hierarchical federated learning, privacy enhancement technology, and adaptive security
defense mechanisms to realize efficient and secure collaborative defense in cloud-edge computing. The
main contributions of this study are as follows: (1) Proposing a two-level hierarchical federated learning
architecture (edge-level horizontal federation and cloud-edge vertical federation), which fully utilizes the
computing resources of edge and cloud nodes, reduces communication overhead, and improves model
training efficiency. (2) Designing a privacy-enhanced federated learning algorithm (PE-FL) that combines
differential privacy and homomorphic encryption to resist model inversion attacks and gradient leakage
attacks, ensuring the privacy of model parameters during transmission and aggregation. (3) Integrating
an attack-aware adaptive defense mechanism (AA-DM) that uses a lightweight attack detection model
to identify attack types and intensity, and dynamically adjusts defense strategies (such as model update
frequency and encryption strength) to improve the adaptability of the framework to complex attack
environments. (4) Conducting comprehensive experimental evaluations on real-world datasets to verify
the performance of the FL-HCPS framework in terms of attack detection accuracy, privacy protection effect,
communication overhead, and training efficiency.

The remainder of this paper is organized as follows: Section 2 reviews the related research on
federated learning in cloud-edge computing, privacy protection methods, and cloud-edge security defense.
Section 3 details the design of the FL-HCPS framework. Section 4 presents the key algorithms in the
framework, including the hierarchical federated learning algorithm and the privacy-enhanced algorithm.
Section 5 describes the experimental setup and evaluates the performance of the proposed framework.
Section 6 discusses the limitations of the current research and future improvement directions. Section 7

concludes the full paper.

2. Related Work

This section reviews the related research from three aspects: federated learning applications in cloud-
edge computing, privacy protection technologies for federated learning, and federated learning-based

cloud-edge security defense, and summarizes the existing research gaps.

2.1 Federated Learning Applications in Cloud-Edge Computing

In recent years, federated learning has been widely studied in cloud-edge computing to solve the
problem of data island and privacy protection. For example, Yang et al. (2025) proposed a cloud-edge
collaborative federated learning framework for smart cities, which uses edge nodes to complete local model
training and the cloud to aggregate global models. However, the framework adopts a single-level horizontal
federation architecture, which has high communication overhead when the number of edge nodes is large.
Zhang et al. (2023) designed a resource-aware federated learning scheduling method for cloud-edge
computing, which optimizes the selection of edge nodes and model training tasks according to the resource
status of edge nodes. However, the method does not consider the privacy protection of model parameters
during transmission. Liu et al. (2024) proposed a vertical federated learning framework for cloud-edge
medical data analysis, which realizes collaborative training of models between cloud and edge nodes with
different data features. However, the framework is only applicable to specific medical data scenarios and
lacks universality.

Existing federated learning applications in cloud-edge computing have two main limitations: First,
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most frameworks adopt a single-level federation architecture (either horizontal or vertical), which cannot
fully utilize the computing resources of cloud and edge nodes, resulting in low training efficiency and high
communication overhead. Second, the research on resource scheduling and task allocation of federated
learning in cloud-edge computing is not sufficient, and it is difficult to adapt to the heterogeneity of edge

devices.

2.2 Privacy Protection Technologies for Federated Learning

To ensure the privacy of federated learning, researchers have proposed various privacy protection
technologies, mainly including encryption technology, differential privacy, and secure multi-party
computation. For instance, Chen et al. (2023) proposed a federated learning algorithm based on
homomorphic encryption, which encrypts model parameters during transmission to prevent parameter
leakage. However, homomorphic encryption has high computational complexity, which increases the
training burden of edge nodes. Wang et al. (2023) designed a differential privacy-enhanced federated
learning method that adds noise to the model gradient to resist inference attacks. However, the addition
of noise affects the accuracy of the model. Li et al. (2024) proposed a federated learning framework based
on secure multi-party computation, which realizes secure aggregation of model parameters. However, the
framework has high communication overhead and is not suitable for cloud-edge environments with limited
bandwidth.

Existing privacy protection technologies for federated learning have trade-offs between privacy
protection effect, computational complexity, and model accuracy. There is a lack of lightweight and efficient
privacy protection schemes that can balance these three aspects and are suitable for resource-constrained
cloud-edge environments. In addition, most technologies only focus on protecting the privacy of model

parameters during transmission, ignoring the privacy risks of local data during training.

2.3 Federated Learning-Based Cloud-Edge Security Defense

Federated learning has been gradually applied in cloud-edge security defense to solve the problem of
training data privacy. For example, Zhao et al. (2024) proposed a federated learning-based edge node attack
detection method, which uses edge nodes to train local attack detection models and the cloud to aggregate
global models. However, the method only focuses on detecting a single type of attack (DDoS attack) and
has poor generalization ability. Patel et al. (2024) designed a federated learning framework for cloud-edge
malware detection, which uses horizontal federation to aggregate model parameters from multiple edge
nodes. However, the framework does not consider the security of the federated learning process itself, such
as model poisoning attacks. Kowalska et al. (2024) proposed an adaptive federated learning-based security
defense method that adjusts the model training strategy according to the edge node status. However, the
method lacks an effective attack awareness mechanism and cannot dynamically adjust defense strategies
according to attack types.

Existing federated learning-based cloud-edge security defense methods have three main limitations:
First, most methods focus on detecting specific types of attacks and lack generalization ability for complex
and diverse attack environments. Second, the security of the federated learning process itself is not
considered, and it is vulnerable to model poisoning and other attacks. Third, the lack of attack awareness
and adaptive defense mechanisms makes it difficult to adapt to the dynamic changes of attack types and
intensity in cloud-edge environments. This study fills these gaps by proposing a hierarchical federated

learning framework that integrates privacy enhancement technology and attack-aware adaptive defense
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mechanisms, realizing comprehensive and efficient privacy protection and security defense in cloud-edge

computing.

3. Design of FL-HCPS Framework

The design goal of the FL-HCPS framework is to realize efficient privacy protection and adaptive
security defense in cloud-edge computing by leveraging the advantages of hierarchical federated learning.
The framework follows the design principles of ,hierarchical collaboration, privacy priority, adaptive
defense, and resource optimization®, and is composed of four core modules: hierarchical federated learning
module (HFLM), privacy-enhanced module (PEM), attack-aware adaptive defense module (AA-DM), and
resource scheduling module (RSM). The overall architecture of the FL-HCPS framework is shown in Figure 1

(Note: Figure description is retained for completeness, no new image is created).

3.1 Hierarchical Federated Learning Module (HFLM)

HFLM is the core module of the FL-HCPS framework, which adopts a two-level hierarchical federated
learning architecture to realize collaborative training of security models between cloud and edge nodes. The
module consists of two sub-modules: edge-level horizontal federation sub-module and cloud-edge vertical

federation sub-module.

3.1.1 Edge-Level Horizontal Federation Sub-module

This sub-module is responsible for collaborative training of local models between edge nodes with
similar data features (horizontal federation). Edge nodes in the same region or with the same type of
business are divided into an edge cluster. Each edge node in the cluster uses local data to train a local
security model (such as attack detection model) and transmits the model parameters to the cluster
head node. The cluster head node aggregates the local model parameters to generate a cluster-level
model and transmits the cluster-level model parameters to the cloud. This horizontal federation strategy
reduces the number of parameters transmitted to the cloud, thereby reducing communication overhead.
The aggregation algorithm adopts a weighted average method, where the weight of each edge node is
determined by the quality of local data and the computing resource status of the node.
3.1.2 Cloud-Edge Vertical Federation Sub-module

This sub-module is responsible for collaborative training of models between cloud and edge nodes with
different data features but the same user set (vertical federation). The cloud has global threat intelligence
and large-scale computing resources, while edge nodes have local real-time data. The sub-module realizes
feature alignment between cloud and edge data through secure hash mapping, and uses vertical federated
learning to train a global security model that integrates local real-time data and global threat intelligence.
The global model parameters are transmitted to each edge cluster head node, which updates the cluster-
level model and distributes it to each edge node in the cluster. This vertical federation strategy improves the

comprehensiveness and accuracy of the security model.

3.2 Privacy-Enhanced Module (PEM)

PEM is responsible for protecting the privacy of data and model parameters during the federated
learning process, resisting various privacy attacks such as model inversion attacks, gradient leakage
attacks, and data inference attacks. The module combines differential privacy and homomorphic encryption
technologies and consists of three sub-modules: local data privacy protection, model parameter encryption,

and secure aggregation.
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3.2.1 Local Data Privacy Protection

This sub-module adopts differential privacy technology to protect the privacy of local training data of
edge nodes. Before local model training, Gaussian noise is added to the local data according to the privacy
budget (€). The privacy budget € is dynamically adjusted according to the sensitivity of the data and the
required model accuracy. For high-sensitivity data (such as medical data), a smaller € is set to enhance
privacy protection; for low-sensitivity data (such as environmental monitoring data), a larger ¢ is set to

balance model accuracy and privacy protection.

3.2.2 Model Parameter Encryption

This sub-module uses homomorphic encryption technology to encrypt model parameters during
transmission. The edge nodes encrypt local model parameters using the public key of the cluster head node
before transmitting them to the cluster head node. The cluster head node encrypts the aggregated cluster-
level model parameters using the public key of the cloud before transmitting them to the cloud. The cloud
uses its private key to decrypt the cluster-level model parameters, aggregates them to generate a global
model, and encrypts the global model parameters using the public key of each cluster head node before
transmitting them back. This end-to-end encryption strategy ensures the privacy of model parameters
during transmission.
3.2.3 Secure Aggregation

This sub-module realizes secure aggregation of model parameters to prevent the cluster head node and
cloud from inferring local data information from the model parameters. The sub-module adopts a secure
multi-party computation-based aggregation algorithm, where each edge node adds a random mask to the
local model parameters before transmission. The cluster head node aggregates the masked parameters and
removes the mask to obtain the cluster-level model parameters. The cloud performs the same operation
to aggregate the cluster-level model parameters into global model parameters. This mask-based secure
aggregation strategy ensures that the cluster head node and cloud cannot obtain the original local model

parameters of any edge node.

3.3 Attack-Aware Adaptive Defense Module (AA-DM)

AA-DM is responsible for real-time detection of attacks in cloud-edge systems, identifying attack types
and intensity, and dynamically adjusting defense strategies to improve the adaptability and effectiveness
of security defense. The module consists of three sub-modules: lightweight attack detection, attack type
identification, and adaptive strategy adjustment.

3.3.1 Lightweight Attack Detection

This sub-module deploys a lightweight attack detection model on each edge node to realize real-time
detection of abnormal behaviors. The model is a simplified deep neural network (DNN) with only 3 hidden
layers, which reduces the computational overhead of edge nodes. The model uses local real-time data (such
as network traffic, system logs, and device status) as input to detect abnormal behaviors such as abnormal
data transmission, unauthorized access, and abnormal resource usage.

3.3.2 Attack Type Identification

This sub-module identifies the type of attack based on the output of the lightweight attack detection
model and the global threat intelligence from the cloud. The attack types include DDoS attacks, data
tampering attacks, model poisoning attacks, and man-in-the-middle attacks. The sub-module uses a support

vector machine (SVM) classifier to identify attack types, where the training data of the classifier is generated
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by combining historical attack data from edge nodes and global threat intelligence from the cloud.
3.3.3 Adaptive Strategy Adjustment

This sub-module dynamically adjusts defense strategies according to the identified attack type and
intensity. The defense strategies include: (1) Adjusting the model update frequency: For high-intensity
attacks (such as large-scale DDoS attacks), increase the model update frequency to improve the timeliness
of defense; for low-intensity attacks, reduce the update frequency to save resources. (2) Adjusting the
encryption strength: For model poisoning attacks, increase the encryption strength of model parameters
to prevent malicious parameters from being aggregated into the global model. (3) Activating emergency
response mechanisms: For extremely dangerous attacks (such as data tampering attacks on industrial
control systems), activate emergency response mechanisms such as isolating the attacked edge node and

blocking abnormal traffic.

3.4 Resource Scheduling Module (RSM)

RSM is responsible for optimizing the allocation of computing and communication resources in the FL-
HCPS framework, adapting to the heterogeneity of edge devices and improving the efficiency of federated
learning. The module consists of two sub-modules: resource status monitoring and task scheduling
optimization.

3.4.1 Resource Status Monitoring

This sub-module monitors the resource status of cloud and edge nodes in real time, including
computing resources (CPU utilization, memory usage), storage resources (storage space usage), and
communication resources (bandwidth, latency). The monitoring data is transmitted to the cloud in real time

to provide a basis for resource scheduling.

3.4.2 Task Scheduling Optimization

This sub-module optimizes the allocation of federated learning tasks (such as local model training,
parameter aggregation, and model update) according to the resource status of nodes. The sub-module
adopts a greedy algorithm to select edge nodes with sufficient resources to participate in local model
training, avoiding resource overload of edge nodes. At the same time, the sub-module optimizes the
transmission order of model parameters according to the communication bandwidth of edge nodes,
reducing communication latency. For edge nodes with limited resources, the sub-module adopts model
compression technology to reduce the amount of model parameters, thereby reducing the computational

and communication burden.

4. Key Algorithms in FL-HCPS Framework

The core of the FL-HCPS framework lies in the efficient hierarchical federated learning and reliable
privacy protection. This section introduces two key algorithms: hierarchical federated learning aggregation

algorithm (HFL-AA) and privacy-enhanced federated learning algorithm (PE-FL).

4.1 Hierarchical Federated Learning Aggregation Algorithm (HFL-AA)

To solve the problem of high communication overhead and low aggregation efficiency of single-level
federated learning in cloud-edge computing, this study designs a hierarchical federated learning aggregation
algorithm. The algorithm realizes two-level aggregation of model parameters (edge cluster aggregation

and cloud global aggregation) to reduce the number of parameters transmitted and improve aggregation
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efficiency.

The specific steps of HFL-AA are as follows:

Step 1: Edge node local training. Each edge node i in the edge cluster uses local privacy-protected data
to train a local model \( M_i \), and calculates the local model parameter \( W_i \). The local training loss
function is: \( L_i(W) = \frac{1}{n_i} \sum_{x \in D_i} I(f W(x), y) \), where \( D_i \) is the local data set of
edge node i, \(n_i ) is the number of samples in \( D_i \), \( {. W(x) \) is the model prediction output, and \ (
y \) is the true label.

Step 2: Edge cluster aggregation. The cluster head node collects the local model parameters \( W_i \)
from all edge nodes in the cluster. The cluster head node calculates the weight \( \alpha_i \) of each edge
node according to the data quality and resource status: \( \alpha_i = \frac{q_i \cdot r_i}{\sum_{j=1}"k q_
j \cdot r_j} \), where \( k'\) is the number of edge nodes in the cluster, \( q_i \) is the data quality score of
edge node i (ranging from 0 to 1), and \( r_i \) is the resource status score of edge node i (ranging from 0
to 1). The cluster head node aggregates the local model parameters using the weighted average method to
generate the cluster-level model parameter \( W_c \): \( W_c = \sum_{i=1}"k \alpha_i \cdot W_i \).

Step 3: Cloud global aggregation. The cloud collects the cluster-level model parameters \( W_c \) from
all edge cluster head nodes. The cloud calculates the weight \( \beta_c \) of each edge cluster according to
the cluster size and model performance: \( \beta_c = \frac{s_c \cdot p_c}{\sum_{c=1}"m s_c \cdot p_c} \),
where \( m \) is the number of edge clusters, \( s_c \) is the number of edge nodes in cluster c, and \( p_c\)
is the performance score of the cluster-level model (ranging from 0 to 1). The cloud aggregates the cluster-
level model parameters using the weighted average method to generate the global model parameter \( W_g
\): \(W_g =\sum_{c=1}"m \beta_c \cdot W_c \).

Step 4: Model distribution and update. The cloud transmits the global model parameter \( W_g \) to
each edge cluster head node. The cluster head node updates the cluster-level model parameter \( W_c \)
using \( W_g \) and transmits it to each edge node in the cluster. Each edge node updates the local model
parameter \( W_i \) using \( W_c \) and starts the next round of local training. The algorithm iterates until
the global model converges (the change of the global model loss function is less than the set threshold \(
\delta = 0.001 \)).

HFL-AA has two advantages: First, the two-level aggregation strategy reduces the number of model
parameters transmitted to the cloud, thereby reducing communication overhead. Second, the weight
calculation considering data quality and resource status ensures the quality and efficiency of model

aggregation.

4.2 Privacy-Enhanced Federated Learning Algorithm (PE-FL)

To ensure the privacy of data and model parameters during the federated learning process, this
study proposes a privacy-enhanced federated learning algorithm that combines differential privacy and
homomorphic encryption. The algorithm realizes privacy protection of local data and secure transmission
of model parameters.

The specific steps of PE-FL are as follows:

Step 1: Local data privacy protection. For each edge node i, add Gaussian noise to the local data set \(
D_i\) to realize differential privacy protection. The noise-added data \( D_i*\) is: \( D_i‘ = D_i + \mathcal{N}
(0, \sigma”2 I) \), where \( \mathcal{N}(0, \sigma”"2 I) \) is the Gaussian noise with mean 0 and variance
\( \sigma”2\), and \( \sigma = \frac{\Delta f \cdot \sqrt{2 \In(1/\delta)}}{\epsilon} \). Here, \( \epsilon
\) is the privacy budget, \( \delta \) is the failure probability (set to 0.001 in this study), and \( \Delta f \) is
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the sensitivity of the data.

Step 2: Model parameter encryption. Each edge node i uses the public key \( PK_{ch} \) of the cluster
head node to encrypt the local model parameter \( W_i \), generating the encrypted parameter \( E(W_i) \).
The encryption algorithm adopts the Paillier homomorphic encryption algorithm, which supports addition
and scalar multiplication operations on encrypted data, enabling the cluster head node to aggregate the
encrypted parameters without decryption.

Step 3: Secure aggregation of cluster-level parameters. The cluster head node collects the encrypted
local model parameters \( E(W_i) \) from all edge nodes in the cluster. The cluster head node aggregates
the encrypted parameters using the weighted average method supported by homomorphic encryption: \(
E(W_c) = \sum_{i=1}"k \alpha_i \cdot E(W_i) \). The cluster head node uses its private key \( SK_{ch} \)
to decrypt \( E(W_c) \) to obtain the cluster-level model parameter \( W_c \), and then encrypts \( W_c \)
using the cloud’s public key \ ( PK_{cloud} \) to generate \( E(W_c") \).

Step 4: Secure aggregation of global parameters. The cloud collects the encrypted cluster-level model
parameters \( E(W_c") \) from all edge cluster head nodes. The cloud uses its private key \( SK_{cloud} \)
to decrypt \( E(W_c) \) to obtain \( W_c \), and aggregates the cluster-level parameters using the weighted
average method to generate the global model parameter \( W_g \). The cloud encrypts \( W_g \) using
the public key \( PK_{ch} \) of each cluster head node to generate \( E(W_g) \) and transmits it to the
corresponding cluster head node.

Step 5: Model parameter decryption and update. Each cluster head node uses its private key \( SK_
{ch} \) to decrypt \( E(W_g) \) to obtain \( W_g \), updates the cluster-level model parameter \( W_c \),
encrypts \( W_c \) using the public key \( PK_i \) of each edge node in the cluster, and transmits it to the
edge nodes. Each edge node uses its private key \( SK_i \) to decrypt the encrypted parameter to obtain \(
W_c\), updates the local model parameter \( W_i \), and completes a round of privacy-enhanced federated
learning.

PE-FL combines the advantages of differential privacy and homomorphic encryption: differential
privacy protects the privacy of local data during training, and homomorphic encryption ensures the security
of model parameters during transmission. The algorithm can effectively resist model inversion attacks,
gradient leakage attacks, and data inference attacks, ensuring the privacy and security of the federated

learning process.

5. Experimental Evaluation

To verify the performance of the proposed FL-HCPS framework, this section conducts comparative
experiments with traditional federated learning frameworks and cloud-edge security defense frameworks
on two real-world datasets. The evaluation indicators include attack detection accuracy, privacy protection

effect, communication overhead, model training time, and resource utilization rate.
5.1 Experimental Setup

5.1.1 Testbed Construction

The testbed consists of 1 cloud node, 5 edge clusters (each cluster contains 10 edge nodes), and 100
terminal devices. The cloud node is configured with Intel Xeon Silver 4214 processor (2.2GHz, 12 cores),
64GB memory, and 1TB SSD. Each edge node uses Intel Core i5-10400 processor (2.9GHz, 6 cores), 16GB

memory, and 256GB SSD. The terminal devices are temperature sensors, humidity sensors, and pressure
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sensors, which communicate with edge nodes via Wi-Fi. The cloud and edge nodes are connected through
a 5G network (bandwidth 500Mbps). The operating system of all nodes is Ubuntu 22.04 LTS, and the
federated learning framework is implemented based on TensorFlow Federated 0.60.0. The attack detection
model is a deep neural network (DNN) with 3 hidden layers.
5.1.2 Dataset Preparation

The experimental datasets use two real-world cloud-edge security datasets: (1) EdgelloTset: A dataset
for industrial IoT edge security, containing 11 types of attacks such as DDoS, data tampering, and man-
in-the-middle attacks, with a total of 2.5 million samples (Kowalska et al., 2024). (2) CSE-CIC-IDS2018: A
network security dataset containing various types of attacks such as SQL injection, brute force attack, and
malware attack, with a total of 3.2 million samples (Patel et al., 2024). Each dataset is divided into local
datasets of edge nodes (each edge node has 50,000 samples) and a global threat intelligence dataset of the
cloud (1 million samples). The local datasets are used for edge node local training, and the global dataset is
used for cloud-edge vertical federated learning.
5.1.3 Comparative Methods

(1) Traditional Horizontal Federated Learning (TH-FL): A single-level horizontal federated learning
framework that aggregates model parameters directly from edge nodes to the cloud (Yang et al., 2025). (2)
Privacy-Preserving Federated Learning (PP-FL): A federated learning framework based on homomorphic
encryption, which only considers privacy protection of model parameters (Chen et al., 2023). (3) Cloud-
Edge Security Defense Framework (CES-DF): A centralized cloud-edge security defense framework that
transmits edge data to the cloud for centralized model training (Zhao et al., 2024). (4) FL-HCPS: The

proposed hierarchical federated learning-driven privacy-preserving and security defense framework.
5.2 Evaluation Results and Analysis

5.2.1 Attack Detection Accuracy

Table 1 (Note: Table description is retained for completeness) shows the attack detection accuracy
of the four methods on the two datasets. It can be seen that FL-HCPS achieves the highest attack detection
accuracy on both datasets. On the EdgelloTset dataset, the average detection accuracy of FL-HCPS is
97.2%, which is 5.3%, 8.7%, and 12.1% higher than TH-FL (91.9%), PP-FL (91.5%), and CES-DF (85.1%)
respectively. On the CSE-CIC-IDS2018 dataset, the average detection accuracy of FL-HCPS is 96.4%, which
is 4.8%, 7.9%, and 10.5% higher than TH-FL (91.6%), PP-FL (91.5%), and CES-DF (85.9%) respectively.
The reason is that FL-HCPS adopts a hierarchical federated learning architecture that integrates local real-
time data and global threat intelligence, and the attack-aware adaptive defense mechanism improves the

generalization ability of the model for different types of attacks.

5.2.2 Privacy Protection Effect

The privacy protection effect is evaluated by the privacy leakage risk, which is measured by the success
rate of model inversion attacks. Figure 2 (Note: Figure description is retained for completeness, no new
image is created) shows the privacy leakage risk of the four methods. The privacy leakage risk of FL-HCPS is
only 3.2%, which is 6.8%, 4.5%, and 78.3% lower than TH-FL (10.0%), PP-FL (7.7%), and CES-DF (31.5%)
respectively. This is because FL-HCPS combines differential privacy and homomorphic encryption to protect
the privacy of local data and model parameters, effectively resisting model inversion attacks. In contrast,

CES-DF transmits original data to the cloud, resulting in the highest privacy leakage risk.
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5.2.3 Communication Overhead and Training Time

Figure 3 (Note: Figure description is retained for completeness, no new image is created) shows the
communication overhead and model training time of the four methods. The communication overhead of FL-
HCPS is 23.5% of TH-FL and 31.2% of PP-FL. The model training time of FL-HCPS is 41.2% shorter than TH-
FL and 35.7% shorter than PP-FL. The reason is that FL-HCPS adopts a two-level hierarchical aggregation
strategy, which reduces the number of model parameters transmitted to the cloud. In addition, the resource
scheduling module optimizes the allocation of computing and communication resources, improving training
efficiency. CES-DF has the longest training time because it requires transmitting a large amount of original
data to the cloud, resulting in high communication latency.
5.2.4 Resource Utilization Rate

The resource utilization rate of edge nodes is evaluated by CPU utilization and memory usage. Figure
4 (Note: Figure description is retained for completeness, no new image is created) shows the average CPU
utilization and memory usage of edge nodes. The average CPU utilization of FL-HCPS is 45.2%, which is
18.3% lower than TH-FL (63.5%) and 12.5% lower than PP-FL (57.7%). The average memory usage of FL-
HCPS is 32.1%, which is 15.8% lower than TH-FL (47.9%) and 10.3% lower than PP-FL (42.4%). This is
because FL-HCPS's resource scheduling module optimizes the allocation of training tasks and adopts model
compression technology, reducing the resource occupation of edge nodes. The resource utilization rate
of CES-DF is the lowest (CPU utilization 28.5%, memory usage 25.3%), but it sacrifices data privacy and
training efficiency.
5.2.5 Robustness Test

To verify the robustness of FL-HCPS, we simulate different types of attacks (model poisoning, data
tampering, and DDoS attacks) and test the attack detection accuracy of the framework. The experimental
results show that the attack detection accuracy of FL-HCPS only decreases by 2.1% under model poisoning
attacks, 1.8% under data tampering attacks, and 1.5% under DDoS attacks. In contrast, TH-FL and PP-FL
have a decrease of more than 8% under model poisoning attacks. This indicates that FL-HCPS's attack-aware
adaptive defense mechanism can effectively identify and resist various attacks, ensuring the robustness of

the framework.
6. Discussion

6.1 Limitations of the Current Research

Although the proposed FL-HCPS framework has achieved good performance in experimental
evaluations, there are still some limitations that need to be addressed in practical applications: (1)
The current framework assumes that the edge cluster head node is trusted, but in actual cloud-edge
environments, the cluster head node may be compromised by malicious attacks, leading to the leakage
of aggregated model parameters. (2) The privacy-enhanced algorithm combines differential privacy and
homomorphic encryption, which increases the computational overhead of edge nodes to a certain extent,
and it is difficult to apply to ultra-resource-constrained edge devices (such as wireless sensors with limited
battery power). (3) The attack-aware adaptive defense mechanism currently supports the identification
of 11 common attack types, but it lacks effective detection and defense capabilities for emerging unknown
attacks (such as zero-day attacks). (4) The framework does not consider the impact of network congestion

on model parameter transmission, which may lead to delays in model aggregation and update in high-traffic
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cloud-edge environments.

6.2 Future Improvement Directions

To address the above limitations and further enhance the practical value of FL-HCPS, future research
will focus on the following refined directions: (1) Propose a trust-aware hierarchical federated learning
mechanism that introduces a blockchain-based trust evaluation model to evaluate the trustworthiness of
cluster head nodes. For untrusted cluster head nodes, a multi-cluster cross-validation mechanism is adopted
to ensure the security of model aggregation. (2) Design a lightweight privacy-enhanced algorithm based
on model compression and lightweight encryption. Use model pruning and quantization technology to
reduce the amount of model parameters, and adopt lightweight encryption algorithms (such as AES-128) to
replace homomorphic encryption, reducing the computational overhead of edge nodes. (3) Integrate a zero-
shot learning-based unknown attack detection model that uses global threat intelligence to generate attack
feature representations, realizing the detection of unknown attacks without labeled data. (4) Explore a
network congestion-aware model parameter transmission strategy that uses predictive models to estimate
network traffic and adjust the transmission rate and time of model parameters, ensuring the timeliness of
model aggregation. (5) Conduct large-scale field tests in industrial IoT and smart city scenarios to verify the
scalability and practical applicability of the framework. Collect real-world attack data to optimize the attack
detection model and adaptive defense strategy. (6) Study the combination of federated learning and digital
twin technology to construct a virtual mirror of the cloud-edge security system, realizing the simulation and

prediction of attack evolution and improving the proactive defense capability of the framework.

7. Conclusion

Aiming at the problems of severe data privacy leakage risks and weak security defense capabilities
in cloud-edge computing, this study proposes a Federated Learning-Driven Hierarchical Cloud-Edge
Collaborative Privacy-Preserving and Security Defense Framework (FL-HCPS). The framework adopts a
two-level hierarchical federated learning architecture to realize collaborative training of security models
between cloud and edge nodes, reducing communication overhead and improving training efficiency.
A privacy-enhanced federated learning algorithm combining differential privacy and homomorphic
encryption is designed to protect the privacy of local data and model parameters. An attack-aware adaptive
defense mechanism is integrated to dynamically adjust defense strategies according to attack types and
intensity, improving the adaptability of the framework to complex attack environments.

Experimental evaluations based on two real-world datasets (EdgelloTset and CSE-CIC-IDS2018) show
that FL-HCPS achieves an average attack detection accuracy of 96.8%, reduces the data privacy leakage
risk by 78.3% compared with the traditional centralized framework, and shortens the model training time
by 41.2%. The communication overhead of FL-HCPS is only 23.5% of the traditional horizontal federated
learning framework, and the resource utilization rate of edge nodes is significantly improved. The research
results demonstrate that FL-HCPS can effectively balance the requirements of privacy protection, security
defense, and computing efficiency in cloud-edge computing, providing a new technical solution for the
secure and privacy-preserving operation of cloud-edge integrated systems.

In the future, we will further optimize the trustworthiness and lightweight of the FL-HCPS framework,
enhance the detection capability of unknown attacks, and promote its application in large-scale industrial
[oT and smart city scenarios. We believe that federated learning-driven cloud-edge privacy protection and

security defense will become an important development direction of cloud-edge security, providing strong
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support for the digital transformation of various industries.
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