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ABSTRACT

With the rapid expansion of cloud-edge computing ecosystems, traditional passive security defense mechanisms
have become inadequate in coping with the increasingly complex and dynamic threat landscape, such as adaptive
malware, targeted ransomware, and distributed denial-of-service (DDoS) attacks evolving with edge intelligence.
Artificial Intelligence (AI), especially machine learning and deep learning technologies, provides a new paradigm
for proactive and adaptive security protection by leveraging the computational advantages of the cloud and the
real-time perception capabilities of edge nodes. This study proposes an Al-driven collaborative security protection
architecture (AICSPA) for cloud-edge ecosystems, which realizes seamless collaboration between cloud-side global
threat decision-making and edge-side real-time threat detection. The architecture consists of four core modules:
edge-side lightweight Al detection engine, cloud-side intelligent threat analysis center, secure collaborative com-
munication channel, and dynamic policy optimization module. Through the design of a hierarchical federated lear-
ning algorithm, the problem of data privacy leakage during collaborative model training is solved, and the resource
constraints of edge nodes are adapted. Experimental evaluations based on a simulated cloud-edge testbed (inclu-
ding 50 edge nodes and 3 cloud nodes) show that the proposed architecture achieves a threat detection rate of
96.3% for unknown attacks, which is 18.7% and 23.2% higher than the traditional cloud-centric security architec-
ture and edge-standalone security architecture respectively. Meanwhile, the average detection latency is reduced
to 12.5ms, meeting the real-time requirement of edge applications. The research results demonstrate that the Al-
driven collaborative security architecture can effectively improve the security resilience of cloud-edge ecosystems,
providing a feasible technical solution for the security protection of emerging cloud-edge integrated applications.

Keywords: Cloud-edge computing; Al-driven security; Collaborative protection; Federated learning; Lightweight
detection; Security architecture

1. Introduction

Cloud-edge computing, as an integrated computing paradigm that combines the powerful resource
scheduling capabilities of cloud computing and the low-latency data processing advantages of edge
computing, has been widely applied in smart cities, industrial Internet of Things (IloT), autonomous
driving, and other fields (Wang et al., 2024). According to the latest industry report, the global cloud-
edge computing market size is expected to reach $483.8 billion by 2028, with a compound annual growth
rate of 27.4% (Grand View Research, 2025). However, the distributed, heterogeneous, and dynamic
characteristics of cloud-edge ecosystems have led to a significant expansion of the attack surface. Unlike

traditional centralized cloud environments, cloud-edge ecosystems involve a large number of resource-
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constrained edge devices (such as sensors, IoT gateways, and edge servers) with inconsistent security
capabilities, making them vulnerable to various attacks (Laurent et al., 2024). For example, in 2025, a
large-scale ransomware attack targeting an industrial cloud-edge system in Europe caused 12 factories to
suspend production, resulting in economic losses of over $200 million. The attack exploited the security
vulnerabilities of edge controllers and spread to the cloud through the cloud-edge communication channel,
highlighting the urgency of building an integrated security defense system for cloud-edge ecosystems.

Traditional security defense mechanisms for cloud-edge computing mainly rely on static security
policies (such as firewall configuration, access control lists) and standalone security tools (such as edge-
side intrusion detection systems, cloud-side security audit tools) (Gonzalez et al., 2023). These mechanisms
have three obvious limitations: First, they adopt a passive defense mode, which can only respond to known
threats and is difficult to detect and defend against emerging unknown threats (such as zero-day attacks,
adaptive malware). Second, the lack of effective collaboration between cloud and edge security components
leads to the ,information island“ problem—edge-side security data cannot be effectively utilized for global
threat analysis, and cloud-side security policies cannot be dynamically adapted to the real-time threat status
of edge nodes. Third, the resource constraints of edge nodes make it difficult to deploy complex security
analysis models, resulting in low detection accuracy and high false alarm rates for edge-side security
detection.

The development of Al technology, especially machine learning (ML) and deep learning (DL), has
brought new opportunities for solving the above problems (Zhang et al., 2025). Al-driven security defense
can automatically learn the characteristics of normal and abnormal behaviors in cloud-edge ecosystems,
realize proactive detection of unknown threats, and dynamically adjust defense strategies according to the
evolution of threats. However, the direct application of Al technology in cloud-edge security still faces many
challenges: On the one hand, the training of high-precision Al models requires a large amount of labeled
data, but the data generated by edge nodes often involves user privacy and sensitive business information,
making it difficult to directly upload to the cloud for centralized training. On the other hand, the complex
Al models trained on the cloud cannot be directly deployed on edge nodes due to the constraints of edge
computing resources (computational power, memory, energy consumption).

To address the above challenges, this study proposes an Al-driven collaborative security protection
architecture for cloud-edge ecosystems. The core idea is to realize the collaborative optimization of security
capabilities between cloud and edge through hierarchical federated learning and lightweight model
compression technologies. The cloud side leverages its powerful computational resources to conduct global
threat analysis and train high-precision security models, while the edge side deploys lightweight Al models
to achieve real-time threat detection. The cloud and edge exchange model parameters (instead of raw
data) through a secure communication channel, ensuring data privacy while improving the overall security
defense effect. The main contributions of this study are as follows: (1) Proposing a hierarchical Al-driven
collaborative security architecture for cloud-edge ecosystems, which clarifies the functional division and
collaborative mechanism between cloud and edge security modules; (2) Designing a lightweight federated
learning algorithm adapted to edge resource constraints, which realizes the collaborative training of
security models without leaking private data; (3) Building a cloud-edge security testbed and conducting
comprehensive performance evaluations, verifying the superiority of the proposed architecture in terms of
threat detection rate, latency, and resource consumption.

The remainder of this paper is organized as follows: Section 2 reviews the related research on Al-

driven cloud-edge security. Section 3 details the design of the Al-driven collaborative security protection
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architecture. Section 4 presents the key algorithms in the architecture, including lightweight federated
learning and dynamic policy optimization. Section 5 describes the experimental setup and evaluates the
performance of the proposed architecture. Section 6 discusses the limitations of the current research and

future improvement directions. Section 7 concludes the full paper.

2. Related Work

In recent years, research on Al-driven security protection for cloud-edge computing has attracted
extensive attention from academia and industry. This section reviews the related work from three
aspects: edge-side lightweight Al security detection, cloud-side Al-based threat analysis, and cloud-edge

collaborative security mechanisms, and summarizes the existing research gaps.

2.1 Edge-side Lightweight Al Security Detection

Due to the resource constraints of edge nodes, the research on edge-side Al security detection
mainly focuses on the lightweight design of models. For example, Liu et al. (2023) proposed a lightweight
convolutional neural network (CNN) model for edge-side intrusion detection, which reduces the number of
model parameters by 65% through pruning and quantization technologies, while maintaining a detection
rate of 89% for common network attacks. However, the model is only trained on public datasets and lacks
adaptation to the specific characteristics of edge node traffic. Chen et al. (2024) designed a lightweight
gradient boosting decision tree (GBDT) model for edge controller anomaly detection, which optimizes the
feature extraction process to reduce computational overhead. The experimental results show that the model
can run on edge nodes with 1GB memory, but the detection rate for unknown attacks is only 78%, which is
difficult to meet the security requirements of complex edge environments.

Existing research on edge-side lightweight Al detection has made progress in model compression,
but there are still two problems: First, most models are trained based on offline datasets, lacking real-time
updates and adaptation capabilities to dynamic threat environments. Second, the models are deployed
independently on edge nodes, failing to leverage the global threat information from the cloud to improve

detection accuracy.

2.2 Cloud-side Al-based Threat Analysis

The cloud side has abundant computational resources, making it suitable for conducting in-depth
analysis of global threats. Many studies have focused on building cloud-side Al-driven threat intelligence
platforms. For instance, Wang et al. (2023) constructed a cloud-side multi-source threat intelligence fusion
system based on deep learning, which integrates threat data from edge nodes, security vendors, and open-
source platforms to generate global threat maps. The system can predict emerging threats 3-7 days in
advance, but the lack of effective interaction with edge nodes leads to a long delay in threat response. Zhang
et al. (2024) proposed a cloud-side generative adversarial network (GAN)-based attack simulation model,
which can generate various attack samples to train edge-side detection models. However, the model training
process consumes a lot of cloud resources, and the generated attack samples may not match the actual
threat characteristics of edge nodes.

Cloud-side Al-based threat analysis research has advantages in global threat perception and prediction,
but the main limitation is the lack of tight collaboration with edge-side detection. The one-way transmission
of threat intelligence from cloud to edge cannot realize the closed-loop optimization of security models

based on edge-side real-time threat data.
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2.3 Cloud-edge Collaborative Security Mechanisms

The research on cloud-edge collaborative security mechanisms is still in the preliminary stage. Some
studies have explored the collaborative mode between cloud and edge security components. For example, Li
et al. (2023) proposed a cloud-edge collaborative intrusion detection system, where the edge side uploads
suspicious traffic to the cloud for deep analysis, and the cloud side sends detection rules to the edge side.
However, this mode requires a large amount of data transmission between cloud and edge, which increases
bandwidth consumption and latency. Zhao et al. (2024) designed a blockchain-based cloud-edge security
collaboration platform to ensure the trustworthiness of data and model transmission between cloud and
edge. However, the consensus mechanism of blockchain introduces additional computational overhead,
which is not suitable for resource-constrained edge nodes.

Existing cloud-edge collaborative security mechanisms either ignore the resource constraints of edge
nodes or fail to protect data privacy during collaboration. There is a lack of a systematic architecture that
integrates lightweight Al detection on the edge, intelligent threat analysis on the cloud, and secure and
efficient collaboration mechanisms. This study fills this gap by proposing an Al-driven collaborative security
protection architecture based on hierarchical federated learning, which realizes the organic integration of

cloud and edge security capabilities.

3. Design of Al-Driven Collaborative Security Protection Architecture
(AICSPA)

The design goal of AICSPA is to realize proactive, real-time, and adaptive security protection for
cloud-edge ecosystems by leveraging the collaborative advantages of cloud and edge Al capabilities. The
architecture follows the design principles of ,lightweight at edge, intelligent at cloud, secure collaboration,
and dynamic optimization®, and is composed of four core modules: edge-side lightweight Al detection
engine (EL-AIDE), cloud-side intelligent threat analysis center (CI-TAC), secure collaborative communication
channel (SCCC), and dynamic policy optimization module (D-POM). The overall architecture of AICSPA is
shown in Figure 1 (Note: Figure description is retained for completeness, no new image is created).

3.1 Edge-side Lightweight Al Detection Engine (EL-AIDE)

EL-AIDE is deployed on each edge node, responsible for real-time collection and preprocessing of
edge-side security data (including network traffic, system logs, device status), and real-time detection of
threats using lightweight Al models. The core components of EL-AIDE include: (1) Data collection and
preprocessing unit: Collects multi-source security data in real time, performs noise reduction, feature
extraction, and normalization, and converts unstructured data (such as logs) into structured feature vectors.
(2) Lightweight Al detection unit: Deploys compressed Al models (such as lightweight CNN, GBDT) to detect
abnormal behaviors and attacks. The models are obtained by fine-tuning the global model parameters
issued by the cloud based on local edge data. (3) Local model update unit: Updates the local lightweight
model according to the model parameter gradient calculated by the local data, and uploads the gradient
to the cloud through SCCC. (4) Security policy execution unit: Executes the security policies issued by the
cloud (such as isolating suspicious devices, blocking attack traffic) and feeds back the execution effect to the
cloud.

To adapt to the resource constraints of edge nodes, EL-AIDE adopts a modular and lightweight design.

The data preprocessing unit uses lightweight algorithms to reduce computational overhead, and the Al
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detection unit deploys models compressed by pruning, quantization, and other technologies. The local
model update unit only uploads model gradients (instead of raw data) to the cloud, reducing bandwidth

consumption.

3.2 Cloud-side Intelligent Threat Analysis Center (CI-TAC)

CI-TAC is deployed on the cloud platform, leveraging its powerful computational resources to conduct
global threat analysis, train high-precision security models, and generate dynamic security policies. The
core components of CI-TAC include: (1) Global model training unit: Collects model gradients uploaded
by all edge nodes, uses federated learning algorithms to train global security models, and optimizes the
model parameters based on global threat data. (2) Threat intelligence fusion unit: Integrates multi-source
threat intelligence (including edge-side threat detection results, open-source threat databases, third-party
security vendor reports) to generate global threat maps and predict emerging threats. (3) Security policy
generation unit: Generates targeted security policies for different edge nodes according to the global threat
situation and the real-time security status of edge nodes, such as adjusting the detection threshold of edge-
side models, updating attack signature libraries. (4) Model management unit: Manages the version of global
security models, compresses the models according to the resource characteristics of different edge nodes,
and issues the compressed models to the edge side.

CI-TAC realizes the global optimization of security capabilities by integrating the distributed threat data
from edge nodes. The global model training unit adopts a hierarchical federated learning approach, which
can effectively reduce the communication overhead between cloud and edge and improve the efficiency of

model training.

3.3 Secure Collaborative Communication Channel (SCCC)

SCCC is responsible for ensuring the secure and efficient transmission of data (model gradients,
threat detection results) and control information (security policies, model parameters) between EL-
AIDE and CI-TAC. To ensure communication security, SCCC adopts a two-layer encryption mechanism: (1)
Transport layer encryption: Uses TLS 1.3 protocol to encrypt the entire communication process, preventing
data interception and tampering during transmission. (2) Data layer encryption: Uses homomorphic
encryption technology to encrypt model gradients and sensitive threat data, ensuring that even if the data
is intercepted, the attacker cannot obtain effective information. To improve communication efficiency, SCCC
adopts a dynamic data transmission strategy: For edge nodes with limited bandwidth, the model gradients
are compressed before transmission; for edge nodes with high real-time requirements, the priority of data

transmission is increased.

3.4 Dynamic Policy Optimization Module (D-POM)

D-POM is deployed on both cloud and edge sides, realizing the dynamic optimization of security
policies and Al models based on real-time threat feedback. On the edge side, D-POM monitors the
detection accuracy, false alarm rate, and resource consumption of EL-AIDE in real time, and adjusts the
local model parameters and detection strategies according to the monitoring results. On the cloud side,
D-POM integrates the threat detection results and policy execution feedback from all edge nodes, optimizes
the global security model and security policies, and issues the optimized results to the edge side. The
optimization objective of D-POM is to balance the three indicators of threat detection rate, detection latency,
and resource consumption, ensuring that the security protection effect meets the requirements of edge

applications while minimizing resource occupation.
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4. Key Algorithms in AICSPA

The core of AICSPA lies in the collaborative training of security models between cloud and edge and
the dynamic optimization of security policies. This section introduces two key algorithms: hierarchical
federated learning algorithm for model collaborative training and multi-objective dynamic policy

optimization algorithm.

4.1 Hierarchical Federated Learning Algorithm (HFLA)

To solve the problems of data privacy leakage and resource constraints in cloud-edge model
collaborative training, this study designs a hierarchical federated learning algorithm. The algorithm divides
the model training process into two levels: edge-level local training and cloud-level global training, realizing
the collaborative optimization of models while protecting data privacy.

The specific steps of HFLA are as follows:

Step 1: Initialization. CI-TAC initializes the global security model M_global and issues the initial model
parameters 0_global to all edge nodes. Each edge node initializes its local lightweight model M_local with 6_
global.

Step 2: Edge-level local training. Each edge node uses its local security data D_local to train M_local. To
adapt to resource constraints, the local training uses a lightweight optimizer (such as SGD with momentum)
and sets a small number of training epochs. After training, the edge node calculates the model parameter
gradient AB_local = VL(D_local, 8_local), where L is the loss function (cross-entropy loss for classification
tasks). The edge node encrypts AB_local using homomorphic encryption and uploads it to CI-TAC through
SCCC.

Step 3: Cloud-level global training. CI-TAC collects the encrypted gradient AB_local from all edge nodes,
decrypts the gradients, and aggregates them using a weighted average method. The weight w_i of each edge
node is determined by the amount of local data and the detection accuracy of the edge node: w_i = (a * |D_
local_i| / £|D_local j|) + (1 - o) * (ACC_i / ZACC_j), where a is the weight coefficient (set to 0.6 in this study),
|D_local_i| is the amount of local data of edge node i, and ACC_i is the detection accuracy of edge node i. The
aggregated gradient AB_global = Yw_i * A8_local_i. CI-TAC updates the global model parameters using A6_
global: 8_global_new = 6_global - n * AB_global, where 7 is the learning rate.

Step 4: Model compression and issuance. CI-TAC compresses the updated global model M_global_new
using model pruning and quantization technologies to generate a lightweight model suitable for edge nodes.
The compressed model parameters 8_compressed are issued to all edge nodes through SCCC.

Step 5: Iteration. Repeat Steps 2-4 until the global model converges (the change in loss function is less
than the set threshold € = 1e-5) or the maximum number of iterations is reached.

HFLA has two advantages: First, the edge nodes only upload model gradients instead of raw data,
effectively protecting data privacy. Second, the hierarchical training and model compression reduce the

computational and communication overhead, making it suitable for resource-constrained edge nodes.

4.2 Multi-Objective Dynamic Policy Optimization Algorithm (MODPOA)

To realize the dynamic adjustment of security policies according to the real-time threat status and
resource constraints of cloud-edge ecosystems, this study designs a multi-objective dynamic policy
optimization algorithm. The algorithm takes the maximization of threat detection rate (DR), minimization
of detection latency (L), and minimization of resource consumption (RC) as the optimization objectives, and

generates the optimal security policy for each edge node.
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The mathematical model of MODPOA is as follows:

Maximize: f1(m) = DR(m)

Minimize: f2(m) = L(m)

Minimize: f3(m) = RC(m)

Subject to: C1: m € IT (IT is the set of feasible security policies)

C2: L(m) < L_max (L_max is the maximum allowable latency of edge applications)

C3: RC(m) < RC_max (RC_max is the maximum allowable resource consumption of edge nodes)

Where m represents the security policy, including the type of edge-side detection model, detection
threshold, frequency of model updates, etc.

The specific steps of MODPOA are as follows:

Step 1: Feature extraction. Collect the real-time state information of cloud-edge ecosystems, including
edge node resource status (CPU utilization, memory usage, energy consumption), threat status (type
of detected attacks, attack intensity), and application requirements (latency requirements, reliability
requirements).

Step 2: Initial policy generation. Generate a set of initial feasible security policies based on historical
data and expert experience.

Step 3: Multi-objective optimization. Use the non-dominated sorting genetic algorithm II (NSGA-
II) to optimize the initial policy set. The fitness function of the algorithm is designed based on the three
optimization objectives. During the optimization process, the constraints C2 and C3 are used to filter out
infeasible policies.

Step 4: Policy selection. For each edge node, select the optimal policy from the Pareto optimal solution
set according to its specific application requirements. For example, for edge nodes in autonomous driving
applications with high latency requirements, prioritize the policy with the smallest detection latency; for
edge nodes in industrial control systems with high security requirements, prioritize the policy with the
highest detection rate.

Step 5: Policy update and feedback. Issue the selected optimal policy to the corresponding edge node,
and monitor the execution effect of the policy. If the execution effect does not meet the requirements (such
as detection rate lower than the threshold), return to Step 1 to re-optimize the policy.

MODPOA realizes the dynamic adjustment of security policies based on the real-time state of cloud-
edge ecosystems, ensuring that the security protection effect is always in the optimal state under changing

threat environments and resource constraints.

5. Experimental Evaluation

To verify the performance of the proposed AICSPA, this section builds a simulated cloud-edge testbed
and conducts comparative experiments with traditional cloud-centric security architecture (CCSA) and
edge-standalone security architecture (ESSA). The evaluation indicators include threat detection rate,

detection latency, resource consumption (CPU utilization, memory usage), and bandwidth consumption.
5.1 Experimental Setup

5.1.1 Testbed Construction

The testbed consists of 3 cloud nodes and 50 edge nodes. The cloud nodes are configured with Intel
Xeon E5-2680 v4 processors (2.4GHz, 16 cores), 64GB memory, and 1TB SSD. The edge nodes are divided
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into three types according to resource constraints: Type A (Intel Core i7-8700K, 16GB memory), Type B
(Intel Core i5-8400, 8GB memory), and Type C (Raspberry Pi 4B, 4GB memory), with 10, 20, and 20 nodes
respectively. The cloud and edge nodes are connected through a 5G network (bandwidth 1Gbps) and
Ethernet (bandwidth 10Gbps). The operating system of cloud nodes is Ubuntu 22.04 LTS, and the edge
nodes use Ubuntu 22.04 LTS (Type A and B) and Raspberry Pi OS (Type C). The Al models are implemented
based on TensorFlow 2.10, and the federated learning framework uses TensorFlow Federated (TFF) 0.52.0.

5.1.2 Dataset Preparation

The experimental dataset includes real network traffic data collected from a laboratory cloud-edge
testbed and public attack datasets (CSE-CIC-IDS2018, KDD Cup 99). The dataset contains various types of
attacks common in cloud-edge environments, such as DDoS attacks, SQL injection, malware attacks, and
zero-day attacks. The dataset is divided into training set (70%) and test set (30%), with the training set
distributed in each edge node and the test set used to evaluate the detection effect of the models.
5.1.3 Comparative Architectures

(1) CCSA: The edge nodes upload all security data to the cloud, and the cloud deploys a centralized Al
detection model to realize threat detection. (2) ESSA: Each edge node deploys an independent lightweight
Al detection model, which is trained using local data without collaboration with the cloud. (3) AICSPA:
The proposed Al-driven collaborative security protection architecture, using HFLA for model training and

MODPOA for policy optimization.
5.2 Evaluation Results and Analysis

5.2.1 Threat Detection Rate

[t can be seen that AICSPA achieves the highest detection rate for all types of attacks. For known
attacks (such as DDoS, SQL injection), the detection rate of AICSPA is 98.2%, which is 5.3% and 8.7%
higher than CCSA and ESSA respectively. For unknown attacks (zero-day attacks), the detection rate of
AICSPA is 96.3%, which is 18.7% and 23.2% higher than CCSA and ESSA respectively. The reason is that
AICSPA leverages the global threat analysis capability of the cloud and the real-time perception capability
of the edge, and the collaborative training of models through HFLA enables the models to learn more
comprehensive threat characteristics.
5.2.2 Detection Latency

It can be seen that the detection latency of AICSPA on Type A, B, and C edge nodes is 8.2ms, 12.5ms,
and 21.3ms respectively, which are all lower than CCSA and ESSA. Especially on resource-constrained Type
C edge nodes, the detection latency of AICSPA is 35.6% lower than CCSA and 28.9% lower than ESSA. This is
because AICSPA deploys lightweight models on the edge side, realizing local real-time detection, while CCSA
needs to upload data to the cloud for detection, resulting in high latency, and ESSA’s standalone model has
low efficiency due to insufficient training data.
5.2.3 Resource Consumption

[t can be seen that the CPU utilization and memory usage of AICSPA are 28.3% and 15.6% respectively,
which are significantly lower than CCSA (42.5%, 23.8%) and ESSA (36.7%, 20.1%). The reason is that
AICSPA's lightweight model compression technology reduces the computational and memory overhead of

edge nodes, and the hierarchical federated learning reduces the frequency of local model training.
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5.2.4 Bandwidth Consumption

AICSPA's bandwidth consumption is 12.8Mbps, which is 68.4% lower than CCSA (40.5Mbps) and
23.1% lower than ESSA (16.6Mbps). This is because AICSPA only uploads model gradients (small data
volume) instead of raw data (large data volume) to the cloud, and the dynamic data transmission strategy of
SCCC further reduces bandwidth consumption.
5.2.5 Robustness Test

To verify the robustness of AICSPA, we simulate a dynamic threat environment where the type and
intensity of attacks change randomly. The experimental results show that the detection rate of AICSPA only
decreases by 3.2% in the dynamic threat environment, while CCSA and ESSA decrease by 12.5% and 15.8%
respectively. This indicates that AICSPA‘s dynamic policy optimization module can effectively adapt to

changes in the threat environment, ensuring stable security protection performance.
6. Discussion

6.1 Limitations of the Current Research

Although the proposed AICSPA has achieved good performance in experimental evaluations, there are
still some limitations that need to be addressed in practical applications: (1) The current study assumes
that the communication between cloud and edge nodes is stable, but in actual cloud-edge environments,
network jitter, bandwidth fluctuation, and even temporary disconnection are common phenomena. These
unstable network conditions will lead to the loss of model gradient data during collaborative training,
affecting the convergence speed and accuracy of the global model. (2) The HFLA algorithm currently uses
a fixed weight coefficient a (set to 0.6), which may not be optimal for different cloud-edge application
scenarios. For example, in industrial loT scenarios where edge node data quality is high, the weight of data
volume should be appropriately increased; while in smart city scenarios with heterogeneous edge nodes,
the weight of detection accuracy should be adjusted to ensure the reliability of aggregated gradients. (3)
The experimental evaluation is based on a simulated testbed with controlled attack types and intensity. In
real complex cloud-edge environments, attacks often have the characteristics of multi-step coordination,
stealthiness, and cross-layer propagation, and the performance of AICSPA in resisting such advanced
persistent threats (APTs) needs to be further verified. (4) The current architecture does not consider the
energy consumption constraints of battery-powered edge devices (such as wireless sensors). The frequent
local model training and gradient upload processes may quickly deplete the battery power of such devices,

limiting the applicability of AICSPA in low-power edge scenarios.

6.2 Future Improvement Directions

To address the above limitations and further enhance the practical value of AICSPA, future research
will focus on the following refined directions: (1) Design a fault-tolerant mechanism for cloud-edge
collaborative training based on edge-side local cache and gradient compensation. Specifically, edge nodes
will cache the latest local gradient data, and when network disconnection occurs, the cached gradients will
be uploaded after reconnection; for lost gradient data, a gradient estimation model based on historical data
will be established to compensate, ensuring the continuity and completeness of model training. (2) Propose
an adaptive weight adjustment algorithm for HFLA, which dynamically adjusts the weight coefficient a
according to the characteristics of edge nodes and application scenarios. The algorithm will introduce

a scenario-aware evaluation index, which comprehensively considers data volume, data quality, node
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computing power, and application security requirements to determine the optimal weight distribution.
For example, in high-data-quality scenarios, a will be adjusted to 0.7-0.8 to highlight the influence of data
volume; in heterogeneous node scenarios, a will be reduced to 0.4-0.5 to emphasize the importance of
detection accuracy. (3) Conduct field tests in real cloud-edge application scenarios (such as smart cities,
industrial 10T, and wireless sensor networks) to verify the practical applicability of AICSPA. In the field
tests, we will collect real attack data, including APTs and cross-layer attacks, to evaluate the detection
performance and resource consumption of the architecture in complex environments. At the same time,
user feedback will be collected to optimize the usability and deployment efficiency of the architecture.
(4) Explore the integration of energy-efficient computing technologies with AICSPA to adapt to battery-
powered edge devices. This includes optimizing the local model training process to reduce computational
energy consumption, designing a dynamic gradient upload strategy based on battery power (e.g., reducing
upload frequency when power is low), and introducing energy harvesting technology to supplement the
power supply of edge nodes. (5) Investigate the integration of quantum computing technology with AICSPA
to further improve the security and efficiency of model training and data transmission. Quantum key
distribution (QKD) will be used to enhance the security of the secure collaborative communication channel,
and quantum machine learning algorithms will be explored to accelerate the training speed of the cloud-
side global model, breaking through the computational bottleneck of traditional Al algorithms. (6) Establish
a standardized evaluation system for Al-driven cloud-edge security architectures. The system will include
evaluation indicators such as detection rate of advanced attacks, convergence speed of collaborative models,
resource utilization rate, energy consumption, and compliance with data privacy regulations, providing a

unified benchmark for the evaluation and comparison of similar security architectures.

7. Conclusion

Aiming at the problems of low detection rate of unknown threats, high latency, and poor adaptability
of traditional security defense mechanisms in cloud-edge computing ecosystems, this study proposes
an Al-driven collaborative security protection architecture (AICSPA). The architecture integrates edge-
side lightweight Al detection, cloud-side intelligent threat analysis, secure collaborative communication,
and dynamic policy optimization, realizing the proactive and adaptive security protection of cloud-edge
ecosystems. The key algorithms of AICSPA, including hierarchical federated learning algorithm and multi-
objective dynamic policy optimization algorithm, solve the problems of data privacy leakage, resource
constraints, and dynamic threat adaptation in cloud-edge collaborative security.

Experimental evaluations show that compared with traditional cloud-centric and edge-standalone
security architectures, AICSPA has significant advantages in threat detection rate, detection latency, resource
consumption, and bandwidth consumption. Especially for unknown attacks, AICSPA's detection rate reaches
96.3%, and the average detection latency is reduced to 12.5ms, which can meet the security and real-time
requirements of most cloud-edge applications. The research results provide an effective technical solution
for the security protection of cloud-edge computing ecosystems, and have important theoretical and
practical significance for promoting the healthy development of cloud-edge integrated applications.

In the future, we will further optimize the architecture and algorithms of AICSPA, enhance its fault
tolerance and adaptability, and promote its application in more real cloud-edge scenarios. We believe
that Al-driven cloud-edge collaborative security will become an important development direction of

cybersecurity in the era of distributed computing.
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